direct product, non-abelian, soluble, monomial
Aliases: C6×S4, (C2×A4)⋊C6, A4⋊(C2×C6), (C2×C6)⋊2D6, C22⋊(S3×C6), C23⋊(C3×S3), (C6×A4)⋊1C2, (C22×C6)⋊1S3, (C3×A4)⋊2C22, SmallGroup(144,188)
Series: Derived ►Chief ►Lower central ►Upper central
A4 — C6×S4 |
Generators and relations for C6×S4
G = < a,b,c,d,e | a6=b2=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=ebe=bc=cb, dcd-1=b, ce=ec, ede=d-1 >
Subgroups: 216 in 70 conjugacy classes, 18 normal (14 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C32, C12, A4, A4, D6, C2×C6, C2×C6, C2×D4, C3×S3, C3×C6, C2×C12, C3×D4, S4, C2×A4, C2×A4, C22×C6, C22×C6, C3×A4, S3×C6, C6×D4, C2×S4, C3×S4, C6×A4, C6×S4
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, S4, S3×C6, C2×S4, C3×S4, C6×S4
Character table of C6×S4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 3 | 3 | 6 | 6 | 1 | 1 | 8 | 8 | 8 | 6 | 6 | 1 | 1 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | 1 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | -1 | 1 | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | ζ6 | ζ65 | ζ3 | ζ32 | ζ6 | -1 | ζ65 | ζ6 | ζ3 | ζ65 | ζ32 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | 1 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ8 | 1 | -1 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | -1 | 1 | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | ζ65 | ζ6 | ζ32 | ζ3 | ζ65 | -1 | ζ6 | ζ65 | ζ32 | ζ6 | ζ3 | linear of order 6 |
ρ9 | 1 | -1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | 1 | -1 | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | -1 | ζ6 | ζ3 | ζ6 | ζ32 | ζ65 | linear of order 6 |
ρ10 | 1 | -1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | 1 | -1 | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | -1 | ζ65 | ζ32 | ζ65 | ζ3 | ζ6 | linear of order 6 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | -1-√-3 | -1+√-3 | ζ65 | -1 | ζ6 | 0 | 0 | -1+√-3 | -1-√-3 | -1-√-3 | -1+√-3 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | ζ65 | -1 | ζ6 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ16 | 2 | 2 | 2 | 2 | 0 | 0 | -1+√-3 | -1-√-3 | ζ6 | -1 | ζ65 | 0 | 0 | -1-√-3 | -1+√-3 | -1+√-3 | -1-√-3 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | ζ6 | -1 | ζ65 | 0 | 0 | 0 | 0 | complex lifted from C3×S3 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | -1-√-3 | -1+√-3 | ζ65 | -1 | ζ6 | 0 | 0 | 1-√-3 | 1+√-3 | 1+√-3 | 1-√-3 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | ζ3 | 1 | ζ32 | 0 | 0 | 0 | 0 | complex lifted from S3×C6 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | -1+√-3 | -1-√-3 | ζ6 | -1 | ζ65 | 0 | 0 | 1+√-3 | 1-√-3 | 1-√-3 | 1+√-3 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | ζ32 | 1 | ζ3 | 0 | 0 | 0 | 0 | complex lifted from S3×C6 |
ρ19 | 3 | 3 | -1 | -1 | 1 | 1 | 3 | 3 | 0 | 0 | 0 | -1 | -1 | 3 | 3 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S4 |
ρ20 | 3 | 3 | -1 | -1 | -1 | -1 | 3 | 3 | 0 | 0 | 0 | 1 | 1 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S4 |
ρ21 | 3 | -3 | -1 | 1 | -1 | 1 | 3 | 3 | 0 | 0 | 0 | -1 | 1 | -3 | -3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from C2×S4 |
ρ22 | 3 | -3 | -1 | 1 | 1 | -1 | 3 | 3 | 0 | 0 | 0 | 1 | -1 | -3 | -3 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | orthogonal lifted from C2×S4 |
ρ23 | 3 | -3 | -1 | 1 | 1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 1 | -1 | 3-3√-3/2 | 3+3√-3/2 | ζ32 | ζ3 | ζ65 | ζ6 | ζ65 | ζ6 | ζ32 | ζ3 | 0 | 0 | 0 | ζ3 | ζ6 | ζ32 | ζ65 | complex faithful |
ρ24 | 3 | -3 | -1 | 1 | 1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 1 | -1 | 3+3√-3/2 | 3-3√-3/2 | ζ3 | ζ32 | ζ6 | ζ65 | ζ6 | ζ65 | ζ3 | ζ32 | 0 | 0 | 0 | ζ32 | ζ65 | ζ3 | ζ6 | complex faithful |
ρ25 | 3 | 3 | -1 | -1 | 1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ65 | ζ65 | ζ6 | ζ3 | ζ32 | ζ32 | ζ3 | 0 | 0 | 0 | ζ65 | ζ6 | ζ6 | ζ65 | complex lifted from C3×S4 |
ρ26 | 3 | 3 | -1 | -1 | 1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ6 | ζ6 | ζ65 | ζ32 | ζ3 | ζ3 | ζ32 | 0 | 0 | 0 | ζ6 | ζ65 | ζ65 | ζ6 | complex lifted from C3×S4 |
ρ27 | 3 | -3 | -1 | 1 | -1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | -1 | 1 | 3-3√-3/2 | 3+3√-3/2 | ζ32 | ζ3 | ζ65 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | 0 | 0 | 0 | ζ65 | ζ32 | ζ6 | ζ3 | complex faithful |
ρ28 | 3 | 3 | -1 | -1 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | 1 | 1 | -3-3√-3/2 | -3+3√-3/2 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | 0 | 0 | 0 | ζ32 | ζ3 | ζ3 | ζ32 | complex lifted from C3×S4 |
ρ29 | 3 | -3 | -1 | 1 | -1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 0 | -1 | 1 | 3+3√-3/2 | 3-3√-3/2 | ζ3 | ζ32 | ζ6 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | 0 | 0 | 0 | ζ6 | ζ3 | ζ65 | ζ32 | complex faithful |
ρ30 | 3 | 3 | -1 | -1 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 0 | 1 | 1 | -3+3√-3/2 | -3-3√-3/2 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | 0 | 0 | 0 | ζ3 | ζ32 | ζ32 | ζ3 | complex lifted from C3×S4 |
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)
(1 4)(2 5)(3 6)(13 16)(14 17)(15 18)
(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)
(1 15 9)(2 16 10)(3 17 11)(4 18 12)(5 13 7)(6 14 8)
(1 4)(2 5)(3 6)(7 16)(8 17)(9 18)(10 13)(11 14)(12 15)
G:=sub<Sym(18)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18), (1,15,9)(2,16,10)(3,17,11)(4,18,12)(5,13,7)(6,14,8), (1,4)(2,5)(3,6)(7,16)(8,17)(9,18)(10,13)(11,14)(12,15)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18), (1,15,9)(2,16,10)(3,17,11)(4,18,12)(5,13,7)(6,14,8), (1,4)(2,5)(3,6)(7,16)(8,17)(9,18)(10,13)(11,14)(12,15) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18)], [(1,4),(2,5),(3,6),(13,16),(14,17),(15,18)], [(7,10),(8,11),(9,12),(13,16),(14,17),(15,18)], [(1,15,9),(2,16,10),(3,17,11),(4,18,12),(5,13,7),(6,14,8)], [(1,4),(2,5),(3,6),(7,16),(8,17),(9,18),(10,13),(11,14),(12,15)]])
G:=TransitiveGroup(18,61);
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 7)(13 21)(14 22)(15 23)(16 24)(17 19)(18 20)
(1 18)(2 13)(3 14)(4 15)(5 16)(6 17)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)
(7 17 19)(8 18 20)(9 13 21)(10 14 22)(11 15 23)(12 16 24)
(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)
G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,8)(2,9)(3,10)(4,11)(5,12)(6,7)(13,21)(14,22)(15,23)(16,24)(17,19)(18,20), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (7,17,19)(8,18,20)(9,13,21)(10,14,22)(11,15,23)(12,16,24), (7,19)(8,20)(9,21)(10,22)(11,23)(12,24)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,8)(2,9)(3,10)(4,11)(5,12)(6,7)(13,21)(14,22)(15,23)(16,24)(17,19)(18,20), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (7,17,19)(8,18,20)(9,13,21)(10,14,22)(11,15,23)(12,16,24), (7,19)(8,20)(9,21)(10,22)(11,23)(12,24) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,7),(13,21),(14,22),(15,23),(16,24),(17,19),(18,20)], [(1,18),(2,13),(3,14),(4,15),(5,16),(6,17),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)], [(7,17,19),(8,18,20),(9,13,21),(10,14,22),(11,15,23),(12,16,24)], [(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)]])
G:=TransitiveGroup(24,254);
C6×S4 is a maximal subgroup of
Dic3⋊S4 D6⋊S4
Matrix representation of C6×S4 ►in GL3(𝔽7) generated by
3 | 0 | 0 |
0 | 3 | 0 |
0 | 0 | 3 |
0 | 3 | 2 |
5 | 0 | 3 |
0 | 0 | 6 |
2 | 5 | 4 |
4 | 1 | 3 |
3 | 5 | 3 |
2 | 5 | 4 |
0 | 3 | 4 |
0 | 4 | 2 |
2 | 5 | 4 |
3 | 2 | 5 |
6 | 2 | 4 |
G:=sub<GL(3,GF(7))| [3,0,0,0,3,0,0,0,3],[0,5,0,3,0,0,2,3,6],[2,4,3,5,1,5,4,3,3],[2,0,0,5,3,4,4,4,2],[2,3,6,5,2,2,4,5,4] >;
C6×S4 in GAP, Magma, Sage, TeX
C_6\times S_4
% in TeX
G:=Group("C6xS4");
// GroupNames label
G:=SmallGroup(144,188);
// by ID
G=gap.SmallGroup(144,188);
# by ID
G:=PCGroup([6,-2,-2,-3,-3,-2,2,579,2164,202,1301,347]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^2=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=e*b*e=b*c=c*b,d*c*d^-1=b,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export