d | ρ | Label | ID | ||
---|---|---|---|---|---|
Dic3×C2×C6 | 48 | Dic3xC2xC6 | 144,166 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C6)⋊1Dic3 = C3×A4⋊C4 | φ: Dic3/C2 → S3 ⊆ Aut C2×C6 | 36 | 3 | (C2xC6):1Dic3 | 144,123 |
(C2×C6)⋊2Dic3 = C6.7S4 | φ: Dic3/C2 → S3 ⊆ Aut C2×C6 | 36 | 6- | (C2xC6):2Dic3 | 144,126 |
(C2×C6)⋊3Dic3 = C3×C6.D4 | φ: Dic3/C6 → C2 ⊆ Aut C2×C6 | 24 | (C2xC6):3Dic3 | 144,84 | |
(C2×C6)⋊4Dic3 = C62⋊5C4 | φ: Dic3/C6 → C2 ⊆ Aut C2×C6 | 72 | (C2xC6):4Dic3 | 144,100 | |
(C2×C6)⋊5Dic3 = C22×C3⋊Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C2×C6 | 144 | (C2xC6):5Dic3 | 144,176 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2×C6).Dic3 = C6.S4 | φ: Dic3/C2 → S3 ⊆ Aut C2×C6 | 36 | 6- | (C2xC6).Dic3 | 144,33 |
(C2×C6).2Dic3 = C3×C4.Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C2×C6 | 24 | 2 | (C2xC6).2Dic3 | 144,75 |
(C2×C6).3Dic3 = C2×C9⋊C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C6 | 144 | (C2xC6).3Dic3 | 144,9 | |
(C2×C6).4Dic3 = C4.Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C2×C6 | 72 | 2 | (C2xC6).4Dic3 | 144,10 |
(C2×C6).5Dic3 = C18.D4 | φ: Dic3/C6 → C2 ⊆ Aut C2×C6 | 72 | (C2xC6).5Dic3 | 144,19 | |
(C2×C6).6Dic3 = C22×Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C2×C6 | 144 | (C2xC6).6Dic3 | 144,45 | |
(C2×C6).7Dic3 = C2×C32⋊4C8 | φ: Dic3/C6 → C2 ⊆ Aut C2×C6 | 144 | (C2xC6).7Dic3 | 144,90 | |
(C2×C6).8Dic3 = C12.58D6 | φ: Dic3/C6 → C2 ⊆ Aut C2×C6 | 72 | (C2xC6).8Dic3 | 144,91 | |
(C2×C6).9Dic3 = C6×C3⋊C8 | central extension (φ=1) | 48 | (C2xC6).9Dic3 | 144,74 |