Extensions 1→N→G→Q→1 with N=C2×C6 and Q=Dic3

Direct product G=N×Q with N=C2×C6 and Q=Dic3
dρLabelID
Dic3×C2×C648Dic3xC2xC6144,166

Semidirect products G=N:Q with N=C2×C6 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1Dic3 = C3×A4⋊C4φ: Dic3/C2S3 ⊆ Aut C2×C6363(C2xC6):1Dic3144,123
(C2×C6)⋊2Dic3 = C6.7S4φ: Dic3/C2S3 ⊆ Aut C2×C6366-(C2xC6):2Dic3144,126
(C2×C6)⋊3Dic3 = C3×C6.D4φ: Dic3/C6C2 ⊆ Aut C2×C624(C2xC6):3Dic3144,84
(C2×C6)⋊4Dic3 = C625C4φ: Dic3/C6C2 ⊆ Aut C2×C672(C2xC6):4Dic3144,100
(C2×C6)⋊5Dic3 = C22×C3⋊Dic3φ: Dic3/C6C2 ⊆ Aut C2×C6144(C2xC6):5Dic3144,176

Non-split extensions G=N.Q with N=C2×C6 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C6).Dic3 = C6.S4φ: Dic3/C2S3 ⊆ Aut C2×C6366-(C2xC6).Dic3144,33
(C2×C6).2Dic3 = C3×C4.Dic3φ: Dic3/C6C2 ⊆ Aut C2×C6242(C2xC6).2Dic3144,75
(C2×C6).3Dic3 = C2×C9⋊C8φ: Dic3/C6C2 ⊆ Aut C2×C6144(C2xC6).3Dic3144,9
(C2×C6).4Dic3 = C4.Dic9φ: Dic3/C6C2 ⊆ Aut C2×C6722(C2xC6).4Dic3144,10
(C2×C6).5Dic3 = C18.D4φ: Dic3/C6C2 ⊆ Aut C2×C672(C2xC6).5Dic3144,19
(C2×C6).6Dic3 = C22×Dic9φ: Dic3/C6C2 ⊆ Aut C2×C6144(C2xC6).6Dic3144,45
(C2×C6).7Dic3 = C2×C324C8φ: Dic3/C6C2 ⊆ Aut C2×C6144(C2xC6).7Dic3144,90
(C2×C6).8Dic3 = C12.58D6φ: Dic3/C6C2 ⊆ Aut C2×C672(C2xC6).8Dic3144,91
(C2×C6).9Dic3 = C6×C3⋊C8central extension (φ=1)48(C2xC6).9Dic3144,74

׿
×
𝔽