Copied to
clipboard

G = C18.D4order 144 = 24·32

7th non-split extension by C18 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C18.11D4, C23.2D9, C222Dic9, C22.7D18, (C2×C18)⋊2C4, C92(C22⋊C4), C18.9(C2×C4), (C2×C6).23D6, (C2×Dic9)⋊2C2, C2.3(C9⋊D4), (C22×C6).6S3, C2.5(C2×Dic9), (C2×C6).5Dic3, C6.18(C3⋊D4), (C2×C18).7C22, (C22×C18).2C2, C3.(C6.D4), C6.10(C2×Dic3), SmallGroup(144,19)

Series: Derived Chief Lower central Upper central

C1C18 — C18.D4
C1C3C9C18C2×C18C2×Dic9 — C18.D4
C9C18 — C18.D4
C1C22C23

Generators and relations for C18.D4
 G = < a,b,c | a18=b4=1, c2=a9, bab-1=cac-1=a-1, cbc-1=a9b-1 >

2C2
2C2
2C22
2C22
18C4
18C4
2C6
2C6
9C2×C4
9C2×C4
2C2×C6
2C2×C6
6Dic3
6Dic3
2C18
2C18
9C22⋊C4
3C2×Dic3
3C2×Dic3
2Dic9
2Dic9
2C2×C18
2C2×C18
3C6.D4

Smallest permutation representation of C18.D4
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 23 42 57)(2 22 43 56)(3 21 44 55)(4 20 45 72)(5 19 46 71)(6 36 47 70)(7 35 48 69)(8 34 49 68)(9 33 50 67)(10 32 51 66)(11 31 52 65)(12 30 53 64)(13 29 54 63)(14 28 37 62)(15 27 38 61)(16 26 39 60)(17 25 40 59)(18 24 41 58)
(1 66 10 57)(2 65 11 56)(3 64 12 55)(4 63 13 72)(5 62 14 71)(6 61 15 70)(7 60 16 69)(8 59 17 68)(9 58 18 67)(19 46 28 37)(20 45 29 54)(21 44 30 53)(22 43 31 52)(23 42 32 51)(24 41 33 50)(25 40 34 49)(26 39 35 48)(27 38 36 47)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,23,42,57)(2,22,43,56)(3,21,44,55)(4,20,45,72)(5,19,46,71)(6,36,47,70)(7,35,48,69)(8,34,49,68)(9,33,50,67)(10,32,51,66)(11,31,52,65)(12,30,53,64)(13,29,54,63)(14,28,37,62)(15,27,38,61)(16,26,39,60)(17,25,40,59)(18,24,41,58), (1,66,10,57)(2,65,11,56)(3,64,12,55)(4,63,13,72)(5,62,14,71)(6,61,15,70)(7,60,16,69)(8,59,17,68)(9,58,18,67)(19,46,28,37)(20,45,29,54)(21,44,30,53)(22,43,31,52)(23,42,32,51)(24,41,33,50)(25,40,34,49)(26,39,35,48)(27,38,36,47)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,23,42,57)(2,22,43,56)(3,21,44,55)(4,20,45,72)(5,19,46,71)(6,36,47,70)(7,35,48,69)(8,34,49,68)(9,33,50,67)(10,32,51,66)(11,31,52,65)(12,30,53,64)(13,29,54,63)(14,28,37,62)(15,27,38,61)(16,26,39,60)(17,25,40,59)(18,24,41,58), (1,66,10,57)(2,65,11,56)(3,64,12,55)(4,63,13,72)(5,62,14,71)(6,61,15,70)(7,60,16,69)(8,59,17,68)(9,58,18,67)(19,46,28,37)(20,45,29,54)(21,44,30,53)(22,43,31,52)(23,42,32,51)(24,41,33,50)(25,40,34,49)(26,39,35,48)(27,38,36,47) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,23,42,57),(2,22,43,56),(3,21,44,55),(4,20,45,72),(5,19,46,71),(6,36,47,70),(7,35,48,69),(8,34,49,68),(9,33,50,67),(10,32,51,66),(11,31,52,65),(12,30,53,64),(13,29,54,63),(14,28,37,62),(15,27,38,61),(16,26,39,60),(17,25,40,59),(18,24,41,58)], [(1,66,10,57),(2,65,11,56),(3,64,12,55),(4,63,13,72),(5,62,14,71),(6,61,15,70),(7,60,16,69),(8,59,17,68),(9,58,18,67),(19,46,28,37),(20,45,29,54),(21,44,30,53),(22,43,31,52),(23,42,32,51),(24,41,33,50),(25,40,34,49),(26,39,35,48),(27,38,36,47)]])

C18.D4 is a maximal subgroup of
C22.D36  C232Dic9  C23.16D18  C222Dic18  C23.8D18  C22⋊C4×D9  C23.9D18  Dic9.D4  C36.49D4  C23.26D18  C4×C9⋊D4  C23.28D18  D4×Dic9  C23.23D18  C36.17D4  C232D18  C362D4  Dic9⋊D4  C244D9  C54.D4  C18.S4  D6⋊Dic9  C62.27D6  C62.127D6  A4⋊Dic9
C18.D4 is a maximal quotient of
C36.55D4  C18.C42  C36.D4  D4⋊Dic9  C232Dic9  C36.9D4  Q82Dic9  Q83Dic9  C54.D4  D6⋊Dic9  C62.127D6

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D6A···6G9A9B9C18A···18U
order122222344446···699918···18
size1111222181818182···22222···2

42 irreducible representations

dim1111222222222
type+++++-++-+
imageC1C2C2C4S3D4Dic3D6D9C3⋊D4Dic9D18C9⋊D4
kernelC18.D4C2×Dic9C22×C18C2×C18C22×C6C18C2×C6C2×C6C23C6C22C22C2
# reps12141221346312

Matrix representation of C18.D4 in GL3(𝔽37) generated by

3600
030
0025
,
3100
001
010
,
600
001
0360
G:=sub<GL(3,GF(37))| [36,0,0,0,3,0,0,0,25],[31,0,0,0,0,1,0,1,0],[6,0,0,0,0,36,0,1,0] >;

C18.D4 in GAP, Magma, Sage, TeX

C_{18}.D_4
% in TeX

G:=Group("C18.D4");
// GroupNames label

G:=SmallGroup(144,19);
// by ID

G=gap.SmallGroup(144,19);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,24,121,2404,208,3461]);
// Polycyclic

G:=Group<a,b,c|a^18=b^4=1,c^2=a^9,b*a*b^-1=c*a*c^-1=a^-1,c*b*c^-1=a^9*b^-1>;
// generators/relations

Export

Subgroup lattice of C18.D4 in TeX

׿
×
𝔽