Extensions 1→N→G→Q→1 with N=C3xC12 and Q=C4

Direct product G=NxQ with N=C3xC12 and Q=C4
dρLabelID
C122144C12^2144,101

Semidirect products G=N:Q with N=C3xC12 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C3xC12):1C4 = C4xC32:C4φ: C4/C1C4 ⊆ Aut C3xC12244(C3xC12):1C4144,132
(C3xC12):2C4 = C4:(C32:C4)φ: C4/C1C4 ⊆ Aut C3xC12244(C3xC12):2C4144,133
(C3xC12):3C4 = C12:Dic3φ: C4/C2C2 ⊆ Aut C3xC12144(C3xC12):3C4144,94
(C3xC12):4C4 = C3xC4:Dic3φ: C4/C2C2 ⊆ Aut C3xC1248(C3xC12):4C4144,78
(C3xC12):5C4 = Dic3xC12φ: C4/C2C2 ⊆ Aut C3xC1248(C3xC12):5C4144,76
(C3xC12):6C4 = C4xC3:Dic3φ: C4/C2C2 ⊆ Aut C3xC12144(C3xC12):6C4144,92
(C3xC12):7C4 = C32xC4:C4φ: C4/C2C2 ⊆ Aut C3xC12144(C3xC12):7C4144,103

Non-split extensions G=N.Q with N=C3xC12 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C3xC12).1C4 = C32:2C16φ: C4/C1C4 ⊆ Aut C3xC12484(C3xC12).1C4144,51
(C3xC12).2C4 = C3:S3:3C8φ: C4/C1C4 ⊆ Aut C3xC12244(C3xC12).2C4144,130
(C3xC12).3C4 = C32:M4(2)φ: C4/C1C4 ⊆ Aut C3xC12244(C3xC12).3C4144,131
(C3xC12).4C4 = C12.58D6φ: C4/C2C2 ⊆ Aut C3xC1272(C3xC12).4C4144,91
(C3xC12).5C4 = C3xC4.Dic3φ: C4/C2C2 ⊆ Aut C3xC12242(C3xC12).5C4144,75
(C3xC12).6C4 = C3xC3:C16φ: C4/C2C2 ⊆ Aut C3xC12482(C3xC12).6C4144,28
(C3xC12).7C4 = C24.S3φ: C4/C2C2 ⊆ Aut C3xC12144(C3xC12).7C4144,29
(C3xC12).8C4 = C6xC3:C8φ: C4/C2C2 ⊆ Aut C3xC1248(C3xC12).8C4144,74
(C3xC12).9C4 = C2xC32:4C8φ: C4/C2C2 ⊆ Aut C3xC12144(C3xC12).9C4144,90
(C3xC12).10C4 = C32xM4(2)φ: C4/C2C2 ⊆ Aut C3xC1272(C3xC12).10C4144,105

׿
x
:
Z
F
o
wr
Q
<