extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC12).1C4 = C32:2C16 | φ: C4/C1 → C4 ⊆ Aut C3xC12 | 48 | 4 | (C3xC12).1C4 | 144,51 |
(C3xC12).2C4 = C3:S3:3C8 | φ: C4/C1 → C4 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).2C4 | 144,130 |
(C3xC12).3C4 = C32:M4(2) | φ: C4/C1 → C4 ⊆ Aut C3xC12 | 24 | 4 | (C3xC12).3C4 | 144,131 |
(C3xC12).4C4 = C12.58D6 | φ: C4/C2 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).4C4 | 144,91 |
(C3xC12).5C4 = C3xC4.Dic3 | φ: C4/C2 → C2 ⊆ Aut C3xC12 | 24 | 2 | (C3xC12).5C4 | 144,75 |
(C3xC12).6C4 = C3xC3:C16 | φ: C4/C2 → C2 ⊆ Aut C3xC12 | 48 | 2 | (C3xC12).6C4 | 144,28 |
(C3xC12).7C4 = C24.S3 | φ: C4/C2 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).7C4 | 144,29 |
(C3xC12).8C4 = C6xC3:C8 | φ: C4/C2 → C2 ⊆ Aut C3xC12 | 48 | | (C3xC12).8C4 | 144,74 |
(C3xC12).9C4 = C2xC32:4C8 | φ: C4/C2 → C2 ⊆ Aut C3xC12 | 144 | | (C3xC12).9C4 | 144,90 |
(C3xC12).10C4 = C32xM4(2) | φ: C4/C2 → C2 ⊆ Aut C3xC12 | 72 | | (C3xC12).10C4 | 144,105 |