Copied to
clipboard

G = Dic3×C12order 144 = 24·32

Direct product of C12 and Dic3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: Dic3×C12, C122C12, C323C42, C62.16C22, C3⋊(C4×C12), (C3×C12)⋊5C4, C2.2(S3×C12), C6.23(C4×S3), (C2×C12).8C6, C6.7(C2×C12), (C2×C6).41D6, (C2×C12).22S3, (C6×C12).11C2, C22.3(S3×C6), C2.2(C6×Dic3), (C2×Dic3).4C6, (C6×Dic3).8C2, C6.19(C2×Dic3), (C2×C4).6(C3×S3), (C2×C6).6(C2×C6), (C3×C6).19(C2×C4), SmallGroup(144,76)

Series: Derived Chief Lower central Upper central

C1C3 — Dic3×C12
C1C3C6C2×C6C62C6×Dic3 — Dic3×C12
C3 — Dic3×C12
C1C2×C12

Generators and relations for Dic3×C12
 G = < a,b,c | a12=b6=1, c2=b3, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 104 in 68 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C6, C2×C4, C2×C4, C32, Dic3, C12, C12, C2×C6, C2×C6, C42, C3×C6, C3×C6, C2×Dic3, C2×C12, C2×C12, C3×Dic3, C3×C12, C62, C4×Dic3, C4×C12, C6×Dic3, C6×C12, Dic3×C12
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, Dic3, C12, D6, C2×C6, C42, C3×S3, C4×S3, C2×Dic3, C2×C12, C3×Dic3, S3×C6, C4×Dic3, C4×C12, S3×C12, C6×Dic3, Dic3×C12

Smallest permutation representation of Dic3×C12
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 19 5 23 9 15)(2 20 6 24 10 16)(3 21 7 13 11 17)(4 22 8 14 12 18)(25 45 33 41 29 37)(26 46 34 42 30 38)(27 47 35 43 31 39)(28 48 36 44 32 40)
(1 38 23 34)(2 39 24 35)(3 40 13 36)(4 41 14 25)(5 42 15 26)(6 43 16 27)(7 44 17 28)(8 45 18 29)(9 46 19 30)(10 47 20 31)(11 48 21 32)(12 37 22 33)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,5,23,9,15)(2,20,6,24,10,16)(3,21,7,13,11,17)(4,22,8,14,12,18)(25,45,33,41,29,37)(26,46,34,42,30,38)(27,47,35,43,31,39)(28,48,36,44,32,40), (1,38,23,34)(2,39,24,35)(3,40,13,36)(4,41,14,25)(5,42,15,26)(6,43,16,27)(7,44,17,28)(8,45,18,29)(9,46,19,30)(10,47,20,31)(11,48,21,32)(12,37,22,33)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,5,23,9,15)(2,20,6,24,10,16)(3,21,7,13,11,17)(4,22,8,14,12,18)(25,45,33,41,29,37)(26,46,34,42,30,38)(27,47,35,43,31,39)(28,48,36,44,32,40), (1,38,23,34)(2,39,24,35)(3,40,13,36)(4,41,14,25)(5,42,15,26)(6,43,16,27)(7,44,17,28)(8,45,18,29)(9,46,19,30)(10,47,20,31)(11,48,21,32)(12,37,22,33) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,19,5,23,9,15),(2,20,6,24,10,16),(3,21,7,13,11,17),(4,22,8,14,12,18),(25,45,33,41,29,37),(26,46,34,42,30,38),(27,47,35,43,31,39),(28,48,36,44,32,40)], [(1,38,23,34),(2,39,24,35),(3,40,13,36),(4,41,14,25),(5,42,15,26),(6,43,16,27),(7,44,17,28),(8,45,18,29),(9,46,19,30),(10,47,20,31),(11,48,21,32),(12,37,22,33)]])

Dic3×C12 is a maximal subgroup of
C3⋊C8⋊Dic3  D122Dic3  C12.80D12  C12.81D12  C62.6C23  Dic35Dic6  Dic36Dic6  Dic3.D12  C62.25C23  C62.29C23  C12.27D12  C12.28D12  Dic3⋊Dic6  C62.37C23  C62.38C23  C62.39C23  C62.44C23  C62.47C23  Dic34D12  Dic35D12  C12⋊D12  C123Dic6  S3×C4×C12

72 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D4E···4L6A···6F6G···6O12A···12H12I···12T12U···12AJ
order12223333344444···46···66···612···1212···1212···12
size11111122211113···31···12···21···12···23···3

72 irreducible representations

dim111111111122222222
type++++-+
imageC1C2C2C3C4C4C6C6C12C12S3Dic3D6C3×S3C4×S3C3×Dic3S3×C6S3×C12
kernelDic3×C12C6×Dic3C6×C12C4×Dic3C3×Dic3C3×C12C2×Dic3C2×C12Dic3C12C2×C12C12C2×C6C2×C4C6C4C22C2
# reps1212844216812124428

Matrix representation of Dic3×C12 in GL3(𝔽13) generated by

900
020
002
,
1200
092
003
,
800
0120
031
G:=sub<GL(3,GF(13))| [9,0,0,0,2,0,0,0,2],[12,0,0,0,9,0,0,2,3],[8,0,0,0,12,3,0,0,1] >;

Dic3×C12 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times C_{12}
% in TeX

G:=Group("Dic3xC12");
// GroupNames label

G:=SmallGroup(144,76);
// by ID

G=gap.SmallGroup(144,76);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-3,72,151,3461]);
// Polycyclic

G:=Group<a,b,c|a^12=b^6=1,c^2=b^3,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽