direct product, metabelian, soluble, monomial, A-group
Aliases: C3×F8, C23⋊C21, (C22×C6)⋊C7, SmallGroup(168,44)
Series: Derived ►Chief ►Lower central ►Upper central
C23 — C3×F8 |
Generators and relations for C3×F8
G = < a,b,c,d,e | a3=b2=c2=d2=e7=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=dc=cd, ece-1=b, ede-1=c >
Character table of C3×F8
class | 1 | 2 | 3A | 3B | 6A | 6B | 7A | 7B | 7C | 7D | 7E | 7F | 21A | 21B | 21C | 21D | 21E | 21F | 21G | 21H | 21I | 21J | 21K | 21L | |
size | 1 | 7 | 1 | 1 | 7 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ3 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | ζ76 | ζ73 | ζ74 | ζ7 | ζ75 | ζ72 | ζ73 | ζ72 | ζ76 | ζ73 | ζ74 | ζ7 | ζ74 | ζ7 | ζ75 | ζ72 | ζ76 | ζ75 | linear of order 7 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | ζ74 | ζ72 | ζ75 | ζ73 | ζ7 | ζ76 | ζ72 | ζ76 | ζ74 | ζ72 | ζ75 | ζ73 | ζ75 | ζ73 | ζ7 | ζ76 | ζ74 | ζ7 | linear of order 7 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | ζ73 | ζ75 | ζ72 | ζ74 | ζ76 | ζ7 | ζ75 | ζ7 | ζ73 | ζ75 | ζ72 | ζ74 | ζ72 | ζ74 | ζ76 | ζ7 | ζ73 | ζ76 | linear of order 7 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | ζ72 | ζ7 | ζ76 | ζ75 | ζ74 | ζ73 | ζ7 | ζ73 | ζ72 | ζ7 | ζ76 | ζ75 | ζ76 | ζ75 | ζ74 | ζ73 | ζ72 | ζ74 | linear of order 7 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | ζ7 | ζ74 | ζ73 | ζ76 | ζ72 | ζ75 | ζ74 | ζ75 | ζ7 | ζ74 | ζ73 | ζ76 | ζ73 | ζ76 | ζ72 | ζ75 | ζ7 | ζ72 | linear of order 7 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | ζ75 | ζ76 | ζ7 | ζ72 | ζ73 | ζ74 | ζ76 | ζ74 | ζ75 | ζ76 | ζ7 | ζ72 | ζ7 | ζ72 | ζ73 | ζ74 | ζ75 | ζ73 | linear of order 7 |
ρ10 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ74 | ζ72 | ζ75 | ζ73 | ζ7 | ζ76 | ζ32ζ72 | ζ3ζ76 | ζ3ζ74 | ζ3ζ72 | ζ3ζ75 | ζ3ζ73 | ζ32ζ75 | ζ32ζ73 | ζ32ζ7 | ζ32ζ76 | ζ32ζ74 | ζ3ζ7 | linear of order 21 |
ρ11 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ75 | ζ76 | ζ7 | ζ72 | ζ73 | ζ74 | ζ32ζ76 | ζ3ζ74 | ζ3ζ75 | ζ3ζ76 | ζ3ζ7 | ζ3ζ72 | ζ32ζ7 | ζ32ζ72 | ζ32ζ73 | ζ32ζ74 | ζ32ζ75 | ζ3ζ73 | linear of order 21 |
ρ12 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ73 | ζ75 | ζ72 | ζ74 | ζ76 | ζ7 | ζ3ζ75 | ζ32ζ7 | ζ32ζ73 | ζ32ζ75 | ζ32ζ72 | ζ32ζ74 | ζ3ζ72 | ζ3ζ74 | ζ3ζ76 | ζ3ζ7 | ζ3ζ73 | ζ32ζ76 | linear of order 21 |
ρ13 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ72 | ζ7 | ζ76 | ζ75 | ζ74 | ζ73 | ζ32ζ7 | ζ3ζ73 | ζ3ζ72 | ζ3ζ7 | ζ3ζ76 | ζ3ζ75 | ζ32ζ76 | ζ32ζ75 | ζ32ζ74 | ζ32ζ73 | ζ32ζ72 | ζ3ζ74 | linear of order 21 |
ρ14 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ76 | ζ73 | ζ74 | ζ7 | ζ75 | ζ72 | ζ3ζ73 | ζ32ζ72 | ζ32ζ76 | ζ32ζ73 | ζ32ζ74 | ζ32ζ7 | ζ3ζ74 | ζ3ζ7 | ζ3ζ75 | ζ3ζ72 | ζ3ζ76 | ζ32ζ75 | linear of order 21 |
ρ15 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ7 | ζ74 | ζ73 | ζ76 | ζ72 | ζ75 | ζ3ζ74 | ζ32ζ75 | ζ32ζ7 | ζ32ζ74 | ζ32ζ73 | ζ32ζ76 | ζ3ζ73 | ζ3ζ76 | ζ3ζ72 | ζ3ζ75 | ζ3ζ7 | ζ32ζ72 | linear of order 21 |
ρ16 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ74 | ζ72 | ζ75 | ζ73 | ζ7 | ζ76 | ζ3ζ72 | ζ32ζ76 | ζ32ζ74 | ζ32ζ72 | ζ32ζ75 | ζ32ζ73 | ζ3ζ75 | ζ3ζ73 | ζ3ζ7 | ζ3ζ76 | ζ3ζ74 | ζ32ζ7 | linear of order 21 |
ρ17 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ76 | ζ73 | ζ74 | ζ7 | ζ75 | ζ72 | ζ32ζ73 | ζ3ζ72 | ζ3ζ76 | ζ3ζ73 | ζ3ζ74 | ζ3ζ7 | ζ32ζ74 | ζ32ζ7 | ζ32ζ75 | ζ32ζ72 | ζ32ζ76 | ζ3ζ75 | linear of order 21 |
ρ18 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ75 | ζ76 | ζ7 | ζ72 | ζ73 | ζ74 | ζ3ζ76 | ζ32ζ74 | ζ32ζ75 | ζ32ζ76 | ζ32ζ7 | ζ32ζ72 | ζ3ζ7 | ζ3ζ72 | ζ3ζ73 | ζ3ζ74 | ζ3ζ75 | ζ32ζ73 | linear of order 21 |
ρ19 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ73 | ζ75 | ζ72 | ζ74 | ζ76 | ζ7 | ζ32ζ75 | ζ3ζ7 | ζ3ζ73 | ζ3ζ75 | ζ3ζ72 | ζ3ζ74 | ζ32ζ72 | ζ32ζ74 | ζ32ζ76 | ζ32ζ7 | ζ32ζ73 | ζ3ζ76 | linear of order 21 |
ρ20 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ72 | ζ7 | ζ76 | ζ75 | ζ74 | ζ73 | ζ3ζ7 | ζ32ζ73 | ζ32ζ72 | ζ32ζ7 | ζ32ζ76 | ζ32ζ75 | ζ3ζ76 | ζ3ζ75 | ζ3ζ74 | ζ3ζ73 | ζ3ζ72 | ζ32ζ74 | linear of order 21 |
ρ21 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ7 | ζ74 | ζ73 | ζ76 | ζ72 | ζ75 | ζ32ζ74 | ζ3ζ75 | ζ3ζ7 | ζ3ζ74 | ζ3ζ73 | ζ3ζ76 | ζ32ζ73 | ζ32ζ76 | ζ32ζ72 | ζ32ζ75 | ζ32ζ7 | ζ3ζ72 | linear of order 21 |
ρ22 | 7 | -1 | 7 | 7 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from F8 |
ρ23 | 7 | -1 | -7-7√-3/2 | -7+7√-3/2 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 7 | -1 | -7+7√-3/2 | -7-7√-3/2 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3)(4 15 23)(5 16 24)(6 17 18)(7 11 19)(8 12 20)(9 13 21)(10 14 22)
(1 15)(2 23)(3 4)(5 9)(6 7)(8 10)(11 17)(12 14)(13 16)(18 19)(20 22)(21 24)
(1 16)(2 24)(3 5)(4 9)(6 10)(7 8)(11 12)(13 15)(14 17)(18 22)(19 20)(21 23)
(1 17)(2 18)(3 6)(4 7)(5 10)(8 9)(11 15)(12 13)(14 16)(19 23)(20 21)(22 24)
(4 5 6 7 8 9 10)(11 12 13 14 15 16 17)(18 19 20 21 22 23 24)
G:=sub<Sym(24)| (1,2,3)(4,15,23)(5,16,24)(6,17,18)(7,11,19)(8,12,20)(9,13,21)(10,14,22), (1,15)(2,23)(3,4)(5,9)(6,7)(8,10)(11,17)(12,14)(13,16)(18,19)(20,22)(21,24), (1,16)(2,24)(3,5)(4,9)(6,10)(7,8)(11,12)(13,15)(14,17)(18,22)(19,20)(21,23), (1,17)(2,18)(3,6)(4,7)(5,10)(8,9)(11,15)(12,13)(14,16)(19,23)(20,21)(22,24), (4,5,6,7,8,9,10)(11,12,13,14,15,16,17)(18,19,20,21,22,23,24)>;
G:=Group( (1,2,3)(4,15,23)(5,16,24)(6,17,18)(7,11,19)(8,12,20)(9,13,21)(10,14,22), (1,15)(2,23)(3,4)(5,9)(6,7)(8,10)(11,17)(12,14)(13,16)(18,19)(20,22)(21,24), (1,16)(2,24)(3,5)(4,9)(6,10)(7,8)(11,12)(13,15)(14,17)(18,22)(19,20)(21,23), (1,17)(2,18)(3,6)(4,7)(5,10)(8,9)(11,15)(12,13)(14,16)(19,23)(20,21)(22,24), (4,5,6,7,8,9,10)(11,12,13,14,15,16,17)(18,19,20,21,22,23,24) );
G=PermutationGroup([[(1,2,3),(4,15,23),(5,16,24),(6,17,18),(7,11,19),(8,12,20),(9,13,21),(10,14,22)], [(1,15),(2,23),(3,4),(5,9),(6,7),(8,10),(11,17),(12,14),(13,16),(18,19),(20,22),(21,24)], [(1,16),(2,24),(3,5),(4,9),(6,10),(7,8),(11,12),(13,15),(14,17),(18,22),(19,20),(21,23)], [(1,17),(2,18),(3,6),(4,7),(5,10),(8,9),(11,15),(12,13),(14,16),(19,23),(20,21),(22,24)], [(4,5,6,7,8,9,10),(11,12,13,14,15,16,17),(18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,282);
Matrix representation of C3×F8 ►in GL7(𝔽43)
36 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 36 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
42 | 42 | 42 | 42 | 42 | 42 | 42 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
42 | 42 | 42 | 42 | 42 | 42 | 42 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
42 | 42 | 42 | 42 | 42 | 42 | 42 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
42 | 42 | 42 | 42 | 42 | 42 | 42 |
G:=sub<GL(7,GF(43))| [36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36],[0,42,0,0,0,0,1,0,42,0,0,0,0,0,0,42,0,0,1,0,0,0,42,0,0,0,1,0,0,42,1,0,0,0,0,0,42,0,1,0,0,0,1,42,0,0,0,0,0],[0,0,0,1,42,0,0,0,0,1,0,42,0,0,0,1,0,0,42,0,0,1,0,0,0,42,0,0,0,0,0,0,42,0,0,0,0,0,0,42,0,1,0,0,0,0,42,1,0],[0,0,0,42,1,0,0,0,0,0,42,0,1,0,0,0,0,42,0,0,1,0,0,0,42,0,0,0,1,0,0,42,0,0,0,0,1,0,42,0,0,0,0,0,1,42,0,0,0],[1,0,0,0,0,0,42,0,0,0,0,0,1,42,0,1,0,0,0,0,42,0,0,0,0,1,0,42,0,0,1,0,0,0,42,0,0,0,0,0,0,42,0,0,0,1,0,0,42] >;
C3×F8 in GAP, Magma, Sage, TeX
C_3\times F_8
% in TeX
G:=Group("C3xF8");
// GroupNames label
G:=SmallGroup(168,44);
// by ID
G=gap.SmallGroup(168,44);
# by ID
G:=PCGroup([5,-3,-7,-2,2,2,217,568,884]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^2=e^7=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=d*c=c*d,e*c*e^-1=b,e*d*e^-1=c>;
// generators/relations
Export
Subgroup lattice of C3×F8 in TeX
Character table of C3×F8 in TeX