extension | φ:Q→Aut N | d | ρ | Label | ID |
C21:1(C2xC4) = Dic3xD7 | φ: C2xC4/C2 → C22 ⊆ Aut C21 | 84 | 4- | C21:1(C2xC4) | 168,12 |
C21:2(C2xC4) = S3xDic7 | φ: C2xC4/C2 → C22 ⊆ Aut C21 | 84 | 4- | C21:2(C2xC4) | 168,13 |
C21:3(C2xC4) = D21:C4 | φ: C2xC4/C2 → C22 ⊆ Aut C21 | 84 | 4+ | C21:3(C2xC4) | 168,14 |
C21:4(C2xC4) = C4xD21 | φ: C2xC4/C4 → C2 ⊆ Aut C21 | 84 | 2 | C21:4(C2xC4) | 168,35 |
C21:5(C2xC4) = C12xD7 | φ: C2xC4/C4 → C2 ⊆ Aut C21 | 84 | 2 | C21:5(C2xC4) | 168,25 |
C21:6(C2xC4) = S3xC28 | φ: C2xC4/C4 → C2 ⊆ Aut C21 | 84 | 2 | C21:6(C2xC4) | 168,30 |
C21:7(C2xC4) = C2xDic21 | φ: C2xC4/C22 → C2 ⊆ Aut C21 | 168 | | C21:7(C2xC4) | 168,37 |
C21:8(C2xC4) = C6xDic7 | φ: C2xC4/C22 → C2 ⊆ Aut C21 | 168 | | C21:8(C2xC4) | 168,27 |
C21:9(C2xC4) = Dic3xC14 | φ: C2xC4/C22 → C2 ⊆ Aut C21 | 168 | | C21:9(C2xC4) | 168,32 |