Copied to
clipboard

G = C4xD21order 168 = 23·3·7

Direct product of C4 and D21

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4xD21, C84:2C2, C28:2S3, C12:2D7, C6.9D14, C2.1D42, C14.9D6, D42.2C2, Dic21:5C2, C42.9C22, C7:2(C4xS3), C3:2(C4xD7), C21:4(C2xC4), SmallGroup(168,35)

Series: Derived Chief Lower central Upper central

C1C21 — C4xD21
C1C7C21C42D42 — C4xD21
C21 — C4xD21
C1C4

Generators and relations for C4xD21
 G = < a,b,c | a4=b21=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 172 in 32 conjugacy classes, 17 normal (15 characteristic)
Quotients: C1, C2, C4, C22, S3, C2xC4, D6, D7, C4xS3, D14, D21, C4xD7, D42, C4xD21
21C2
21C2
21C4
21C22
7S3
7S3
3D7
3D7
21C2xC4
7Dic3
7D6
3D14
3Dic7
7C4xS3
3C4xD7

Smallest permutation representation of C4xD21
On 84 points
Generators in S84
(1 76 30 56)(2 77 31 57)(3 78 32 58)(4 79 33 59)(5 80 34 60)(6 81 35 61)(7 82 36 62)(8 83 37 63)(9 84 38 43)(10 64 39 44)(11 65 40 45)(12 66 41 46)(13 67 42 47)(14 68 22 48)(15 69 23 49)(16 70 24 50)(17 71 25 51)(18 72 26 52)(19 73 27 53)(20 74 28 54)(21 75 29 55)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 42)(10 41)(11 40)(12 39)(13 38)(14 37)(15 36)(16 35)(17 34)(18 33)(19 32)(20 31)(21 30)(43 67)(44 66)(45 65)(46 64)(47 84)(48 83)(49 82)(50 81)(51 80)(52 79)(53 78)(54 77)(55 76)(56 75)(57 74)(58 73)(59 72)(60 71)(61 70)(62 69)(63 68)

G:=sub<Sym(84)| (1,76,30,56)(2,77,31,57)(3,78,32,58)(4,79,33,59)(5,80,34,60)(6,81,35,61)(7,82,36,62)(8,83,37,63)(9,84,38,43)(10,64,39,44)(11,65,40,45)(12,66,41,46)(13,67,42,47)(14,68,22,48)(15,69,23,49)(16,70,24,50)(17,71,25,51)(18,72,26,52)(19,73,27,53)(20,74,28,54)(21,75,29,55), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,42)(10,41)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30)(43,67)(44,66)(45,65)(46,64)(47,84)(48,83)(49,82)(50,81)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,70)(62,69)(63,68)>;

G:=Group( (1,76,30,56)(2,77,31,57)(3,78,32,58)(4,79,33,59)(5,80,34,60)(6,81,35,61)(7,82,36,62)(8,83,37,63)(9,84,38,43)(10,64,39,44)(11,65,40,45)(12,66,41,46)(13,67,42,47)(14,68,22,48)(15,69,23,49)(16,70,24,50)(17,71,25,51)(18,72,26,52)(19,73,27,53)(20,74,28,54)(21,75,29,55), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,42)(10,41)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(21,30)(43,67)(44,66)(45,65)(46,64)(47,84)(48,83)(49,82)(50,81)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(61,70)(62,69)(63,68) );

G=PermutationGroup([[(1,76,30,56),(2,77,31,57),(3,78,32,58),(4,79,33,59),(5,80,34,60),(6,81,35,61),(7,82,36,62),(8,83,37,63),(9,84,38,43),(10,64,39,44),(11,65,40,45),(12,66,41,46),(13,67,42,47),(14,68,22,48),(15,69,23,49),(16,70,24,50),(17,71,25,51),(18,72,26,52),(19,73,27,53),(20,74,28,54),(21,75,29,55)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,42),(10,41),(11,40),(12,39),(13,38),(14,37),(15,36),(16,35),(17,34),(18,33),(19,32),(20,31),(21,30),(43,67),(44,66),(45,65),(46,64),(47,84),(48,83),(49,82),(50,81),(51,80),(52,79),(53,78),(54,77),(55,76),(56,75),(57,74),(58,73),(59,72),(60,71),(61,70),(62,69),(63,68)]])

C4xD21 is a maximal subgroup of
D21:C8  D42.C4  C56:S3  D28:S3  D12:D7  D21:Q8  D6.D14  C4xS3xD7  C28:D6  D84:11C2  D4:2D21  Q8:3D21
C4xD21 is a maximal quotient of
C56:S3  C42.4Q8  C2.D84

48 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D 6 7A7B7C12A12B14A14B14C21A···21F28A···28F42A···42F84A···84L
order1222344446777121214141421···2128···2842···4284···84
size11212121121212222222222···22···22···22···2

48 irreducible representations

dim11111222222222
type++++++++++
imageC1C2C2C2C4S3D6D7C4xS3D14D21C4xD7D42C4xD21
kernelC4xD21Dic21C84D42D21C28C14C12C7C6C4C3C2C1
# reps111141132366612

Matrix representation of C4xD21 in GL2(F41) generated by

320
032
,
178
840
,
10
840
G:=sub<GL(2,GF(41))| [32,0,0,32],[17,8,8,40],[1,8,0,40] >;

C4xD21 in GAP, Magma, Sage, TeX

C_4\times D_{21}
% in TeX

G:=Group("C4xD21");
// GroupNames label

G:=SmallGroup(168,35);
// by ID

G=gap.SmallGroup(168,35);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-7,26,323,3604]);
// Polycyclic

G:=Group<a,b,c|a^4=b^21=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C4xD21 in TeX

׿
x
:
Z
F
o
wr
Q
<