Extensions 1→N→G→Q→1 with N=C14 and Q=D6

Direct product G=N×Q with N=C14 and Q=D6
dρLabelID
S3×C2×C1484S3xC2xC14168,55

Semidirect products G=N:Q with N=C14 and Q=D6
extensionφ:Q→Aut NdρLabelID
C141D6 = C2×S3×D7φ: D6/S3C2 ⊆ Aut C14424+C14:1D6168,50
C142D6 = C22×D21φ: D6/C6C2 ⊆ Aut C1484C14:2D6168,56

Non-split extensions G=N.Q with N=C14 and Q=D6
extensionφ:Q→Aut NdρLabelID
C14.1D6 = Dic3×D7φ: D6/S3C2 ⊆ Aut C14844-C14.1D6168,12
C14.2D6 = S3×Dic7φ: D6/S3C2 ⊆ Aut C14844-C14.2D6168,13
C14.3D6 = D21⋊C4φ: D6/S3C2 ⊆ Aut C14844+C14.3D6168,14
C14.4D6 = C21⋊D4φ: D6/S3C2 ⊆ Aut C14844-C14.4D6168,15
C14.5D6 = C3⋊D28φ: D6/S3C2 ⊆ Aut C14844+C14.5D6168,16
C14.6D6 = C7⋊D12φ: D6/S3C2 ⊆ Aut C14844+C14.6D6168,17
C14.7D6 = C21⋊Q8φ: D6/S3C2 ⊆ Aut C141684-C14.7D6168,18
C14.8D6 = Dic42φ: D6/C6C2 ⊆ Aut C141682-C14.8D6168,34
C14.9D6 = C4×D21φ: D6/C6C2 ⊆ Aut C14842C14.9D6168,35
C14.10D6 = D84φ: D6/C6C2 ⊆ Aut C14842+C14.10D6168,36
C14.11D6 = C2×Dic21φ: D6/C6C2 ⊆ Aut C14168C14.11D6168,37
C14.12D6 = C217D4φ: D6/C6C2 ⊆ Aut C14842C14.12D6168,38
C14.13D6 = C7×Dic6central extension (φ=1)1682C14.13D6168,29
C14.14D6 = S3×C28central extension (φ=1)842C14.14D6168,30
C14.15D6 = C7×D12central extension (φ=1)842C14.15D6168,31
C14.16D6 = Dic3×C14central extension (φ=1)168C14.16D6168,32
C14.17D6 = C7×C3⋊D4central extension (φ=1)842C14.17D6168,33

׿
×
𝔽