Copied to
clipboard

G = C2×S3×D7order 168 = 23·3·7

Direct product of C2, S3 and D7

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×S3×D7, C21⋊C23, C141D6, C61D14, C42⋊C22, D425C2, D21⋊C22, (C6×D7)⋊3C2, (S3×C7)⋊C22, C71(C22×S3), (C3×D7)⋊C22, (S3×C14)⋊3C2, C31(C22×D7), SmallGroup(168,50)

Series: Derived Chief Lower central Upper central

C1C21 — C2×S3×D7
C1C7C21C3×D7S3×D7 — C2×S3×D7
C21 — C2×S3×D7
C1C2

Generators and relations for C2×S3×D7
 G = < a,b,c,d,e | a2=b3=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 336 in 64 conjugacy classes, 28 normal (14 characteristic)
C1, C2, C2, C3, C22, S3, S3, C6, C6, C7, C23, D6, D6, C2×C6, D7, D7, C14, C14, C21, C22×S3, D14, D14, C2×C14, S3×C7, C3×D7, D21, C42, C22×D7, S3×D7, C6×D7, S3×C14, D42, C2×S3×D7
Quotients: C1, C2, C22, S3, C23, D6, D7, C22×S3, D14, C22×D7, S3×D7, C2×S3×D7

Character table of C2×S3×D7

 class 12A2B2C2D2E2F2G36A6B6C7A7B7C14A14B14C14D14E14F14G14H14I21A21B21C42A42B42C
 size 1133772121221414222222666666444444
ρ1111111111111111111111111111111    trivial
ρ21-1-11-111-11-11-1111-1-1-11-1-111-1111-1-1-1    linear of order 2
ρ311-1-111-1-11111111111-1-1-1-1-1-1111111    linear of order 2
ρ41-11-1-11-111-11-1111-1-1-1-111-1-11111-1-1-1    linear of order 2
ρ51111-1-1-1-111-1-1111111111111111111    linear of order 2
ρ61-1-111-1-111-1-11111-1-1-11-1-111-1111-1-1-1    linear of order 2
ρ711-1-1-1-11111-1-1111111-1-1-1-1-1-1111111    linear of order 2
ρ81-11-11-11-11-1-11111-1-1-1-111-1-11111-1-1-1    linear of order 2
ρ92-2002-200-111-1222-2-2-2000000-1-1-1111    orthogonal lifted from D6
ρ1022002200-1-1-1-1222222000000-1-1-1-1-1-1    orthogonal lifted from S3
ρ112200-2-200-1-111222222000000-1-1-1-1-1-1    orthogonal lifted from D6
ρ122-200-2200-11-11222-2-2-2000000-1-1-1111    orthogonal lifted from D6
ρ132-2-2200002-200ζ7572ζ767ζ747374737677572ζ75727677572ζ7473ζ7677473ζ7572ζ7473ζ76776774737572    orthogonal lifted from D14
ρ1422-2-200002200ζ7572ζ767ζ7473ζ7473ζ767ζ75727572767757274737677473ζ7572ζ7473ζ767ζ767ζ7473ζ7572    orthogonal lifted from D14
ρ152-22-200002-200ζ767ζ7473ζ757275727473767767ζ7473ζ76775727473ζ7572ζ767ζ7572ζ747374737572767    orthogonal lifted from D14
ρ16222200002200ζ767ζ7473ζ7572ζ7572ζ7473ζ767ζ767ζ7473ζ767ζ7572ζ7473ζ7572ζ767ζ7572ζ7473ζ7473ζ7572ζ767    orthogonal lifted from D7
ρ172-2-2200002-200ζ767ζ7473ζ757275727473767ζ7677473767ζ7572ζ74737572ζ767ζ7572ζ747374737572767    orthogonal lifted from D14
ρ18222200002200ζ7473ζ7572ζ767ζ767ζ7572ζ7473ζ7473ζ7572ζ7473ζ767ζ7572ζ767ζ7473ζ767ζ7572ζ7572ζ767ζ7473    orthogonal lifted from D7
ρ192-22-200002-200ζ7572ζ767ζ7473747376775727572ζ767ζ75727473767ζ7473ζ7572ζ7473ζ76776774737572    orthogonal lifted from D14
ρ2022-2-200002200ζ767ζ7473ζ7572ζ7572ζ7473ζ7677677473767757274737572ζ767ζ7572ζ7473ζ7473ζ7572ζ767    orthogonal lifted from D14
ρ2122-2-200002200ζ7473ζ7572ζ767ζ767ζ7572ζ74737473757274737677572767ζ7473ζ767ζ7572ζ7572ζ767ζ7473    orthogonal lifted from D14
ρ222-22-200002-200ζ7473ζ7572ζ767767757274737473ζ7572ζ74737677572ζ767ζ7473ζ767ζ757275727677473    orthogonal lifted from D14
ρ23222200002200ζ7572ζ767ζ7473ζ7473ζ767ζ7572ζ7572ζ767ζ7572ζ7473ζ767ζ7473ζ7572ζ7473ζ767ζ767ζ7473ζ7572    orthogonal lifted from D7
ρ242-2-2200002-200ζ7473ζ7572ζ76776775727473ζ747375727473ζ767ζ7572767ζ7473ζ767ζ757275727677473    orthogonal lifted from D14
ρ2544000000-2-20076+2ζ774+2ζ7375+2ζ7275+2ζ7274+2ζ7376+2ζ70000007677572747374737572767    orthogonal lifted from S3×D7
ρ264-4000000-220075+2ζ7276+2ζ774+2ζ73-2ζ74-2ζ73-2ζ76-2ζ7-2ζ75-2ζ7200000075727473767ζ767ζ7473ζ7572    orthogonal faithful
ρ274-4000000-220076+2ζ774+2ζ7375+2ζ72-2ζ75-2ζ72-2ζ74-2ζ73-2ζ76-2ζ700000076775727473ζ7473ζ7572ζ767    orthogonal faithful
ρ2844000000-2-20075+2ζ7276+2ζ774+2ζ7374+2ζ7376+2ζ775+2ζ720000007572747376776774737572    orthogonal lifted from S3×D7
ρ2944000000-2-20074+2ζ7375+2ζ7276+2ζ776+2ζ775+2ζ7274+2ζ730000007473767757275727677473    orthogonal lifted from S3×D7
ρ304-4000000-220074+2ζ7375+2ζ7276+2ζ7-2ζ76-2ζ7-2ζ75-2ζ72-2ζ74-2ζ7300000074737677572ζ7572ζ767ζ7473    orthogonal faithful

Smallest permutation representation of C2×S3×D7
On 42 points
Generators in S42
(1 27)(2 28)(3 22)(4 23)(5 24)(6 25)(7 26)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)
(1 13 20)(2 14 21)(3 8 15)(4 9 16)(5 10 17)(6 11 18)(7 12 19)(22 29 36)(23 30 37)(24 31 38)(25 32 39)(26 33 40)(27 34 41)(28 35 42)
(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)(36 38)(39 42)(40 41)

G:=sub<Sym(42)| (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42), (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41)>;

G:=Group( (1,27)(2,28)(3,22)(4,23)(5,24)(6,25)(7,26)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42), (1,13,20)(2,14,21)(3,8,15)(4,9,16)(5,10,17)(6,11,18)(7,12,19)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)(36,38)(39,42)(40,41) );

G=PermutationGroup([[(1,27),(2,28),(3,22),(4,23),(5,24),(6,25),(7,26),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42)], [(1,13,20),(2,14,21),(3,8,15),(4,9,16),(5,10,17),(6,11,18),(7,12,19),(22,29,36),(23,30,37),(24,31,38),(25,32,39),(26,33,40),(27,34,41),(28,35,42)], [(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34),(36,38),(39,42),(40,41)]])

C2×S3×D7 is a maximal subgroup of
C28⋊D6  D6⋊D14
C2×S3×D7 is a maximal quotient of
D285S3  D28⋊S3  D12⋊D7  D84⋊C2  D21⋊Q8  D6.D14  D125D7  D14.D6  C28⋊D6  Dic7.D6  C42.C23  Dic3.D14  D6⋊D14

Matrix representation of C2×S3×D7 in GL5(𝔽43)

420000
01000
00100
00010
00001
,
10000
0424200
01000
00010
00001
,
420000
01000
0424200
00010
00001
,
10000
01000
00100
000421
0002220
,
420000
01000
00100
000420
000221

G:=sub<GL(5,GF(43))| [42,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,42,1,0,0,0,42,0,0,0,0,0,0,1,0,0,0,0,0,1],[42,0,0,0,0,0,1,42,0,0,0,0,42,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,42,22,0,0,0,1,20],[42,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,42,22,0,0,0,0,1] >;

C2×S3×D7 in GAP, Magma, Sage, TeX

C_2\times S_3\times D_7
% in TeX

G:=Group("C2xS3xD7");
// GroupNames label

G:=SmallGroup(168,50);
// by ID

G=gap.SmallGroup(168,50);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-7,168,3604]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Character table of C2×S3×D7 in TeX

׿
×
𝔽