Extensions 1→N→G→Q→1 with N=C3×2+ (1+4) and Q=C2

Direct product G=N×Q with N=C3×2+ (1+4) and Q=C2
dρLabelID
C6×2+ (1+4)48C6xES+(2,2)192,1534

Semidirect products G=N:Q with N=C3×2+ (1+4) and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×2+ (1+4))⋊1C2 = 2+ (1+4)6S3φ: C2/C1C2 ⊆ Out C3×2+ (1+4)248+(C3xES+(2,2)):1C2192,800
(C3×2+ (1+4))⋊2C2 = D12.32C23φ: C2/C1C2 ⊆ Out C3×2+ (1+4)488+(C3xES+(2,2)):2C2192,1394
(C3×2+ (1+4))⋊3C2 = D12.33C23φ: C2/C1C2 ⊆ Out C3×2+ (1+4)488-(C3xES+(2,2)):3C2192,1395
(C3×2+ (1+4))⋊4C2 = S3×2+ (1+4)φ: C2/C1C2 ⊆ Out C3×2+ (1+4)248+(C3xES+(2,2)):4C2192,1524
(C3×2+ (1+4))⋊5C2 = D6.C24φ: C2/C1C2 ⊆ Out C3×2+ (1+4)488-(C3xES+(2,2)):5C2192,1525
(C3×2+ (1+4))⋊6C2 = 2+ (1+4)7S3φ: C2/C1C2 ⊆ Out C3×2+ (1+4)248+(C3xES+(2,2)):6C2192,803
(C3×2+ (1+4))⋊7C2 = C3×D44D4φ: C2/C1C2 ⊆ Out C3×2+ (1+4)244(C3xES+(2,2)):7C2192,886
(C3×2+ (1+4))⋊8C2 = C3×C2≀C22φ: C2/C1C2 ⊆ Out C3×2+ (1+4)244(C3xES+(2,2)):8C2192,890
(C3×2+ (1+4))⋊9C2 = C3×D4○D8φ: C2/C1C2 ⊆ Out C3×2+ (1+4)484(C3xES+(2,2)):9C2192,1465
(C3×2+ (1+4))⋊10C2 = C3×D4○SD16φ: C2/C1C2 ⊆ Out C3×2+ (1+4)484(C3xES+(2,2)):10C2192,1466
(C3×2+ (1+4))⋊11C2 = C3×C2.C25φ: trivial image484(C3xES+(2,2)):11C2192,1536

Non-split extensions G=N.Q with N=C3×2+ (1+4) and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×2+ (1+4)).1C2 = 2+ (1+4).4S3φ: C2/C1C2 ⊆ Out C3×2+ (1+4)488-(C3xES+(2,2)).1C2192,801
(C3×2+ (1+4)).2C2 = 2+ (1+4).5S3φ: C2/C1C2 ⊆ Out C3×2+ (1+4)488-(C3xES+(2,2)).2C2192,802
(C3×2+ (1+4)).3C2 = C3×D4.9D4φ: C2/C1C2 ⊆ Out C3×2+ (1+4)484(C3xES+(2,2)).3C2192,888
(C3×2+ (1+4)).4C2 = C3×C23.7D4φ: C2/C1C2 ⊆ Out C3×2+ (1+4)484(C3xES+(2,2)).4C2192,891

׿
×
𝔽