Copied to
clipboard

G = C3xD4:4D4order 192 = 26·3

Direct product of C3 and D4:4D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3xD4:4D4, 2+ 1+4:6C6, C4wrC2:1C6, D4:4(C3xD4), Q8:5(C3xD4), (C3xD4):22D4, C4:1D4:3C6, C8:C22:1C6, C42:5(C2xC6), (C3xQ8):22D4, C4.27(C6xD4), C4.D4:1C6, C23.5(C3xD4), (C22xC6).5D4, (C4xC12):35C22, C12.388(C2xD4), (C6xD4):28C22, M4(2):1(C2xC6), C22.14(C6xD4), C6.100C22wrC2, (C2xC12).609C23, (C3x2+ 1+4):7C2, (C3xM4(2)):14C22, (C3xC4wrC2):5C2, (C2xD4):2(C2xC6), (C3xC8:C22):8C2, C4oD4.6(C2xC6), (C3xC4:1D4):11C2, (C2xC6).409(C2xD4), (C3xC4.D4):5C2, (C2xC4).4(C22xC6), C2.14(C3xC22wrC2), (C3xC4oD4).31C22, SmallGroup(192,886)

Series: Derived Chief Lower central Upper central

C1C2xC4 — C3xD4:4D4
C1C2C22C2xC4C2xC12C6xD4C3xC8:C22 — C3xD4:4D4
C1C2C2xC4 — C3xD4:4D4
C1C6C2xC12 — C3xD4:4D4

Generators and relations for C3xD4:4D4
 G = < a,b,c,d,e | a3=b4=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=b-1c, ece=bc, ede=d-1 >

Subgroups: 370 in 168 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, C23, C23, C12, C12, C2xC6, C2xC6, C42, M4(2), D8, SD16, C2xD4, C2xD4, C4oD4, C4oD4, C24, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C22xC6, C22xC6, C4.D4, C4wrC2, C4:1D4, C8:C22, 2+ 1+4, C4xC12, C3xM4(2), C3xD8, C3xSD16, C6xD4, C6xD4, C3xC4oD4, C3xC4oD4, D4:4D4, C3xC4.D4, C3xC4wrC2, C3xC4:1D4, C3xC8:C22, C3x2+ 1+4, C3xD4:4D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2xC6, C2xD4, C3xD4, C22xC6, C22wrC2, C6xD4, D4:4D4, C3xC22wrC2, C3xD4:4D4

Permutation representations of C3xD4:4D4
On 24 points - transitive group 24T350
Generators in S24
(1 11 7)(2 12 8)(3 9 5)(4 10 6)(13 21 17)(14 22 18)(15 23 19)(16 24 20)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 16)(2 15)(3 14)(4 13)(5 18)(6 17)(7 20)(8 19)(9 22)(10 21)(11 24)(12 23)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 3)(5 7)(9 11)(13 16)(14 15)(17 20)(18 19)(21 24)(22 23)

G:=sub<Sym(24)| (1,11,7)(2,12,8)(3,9,5)(4,10,6)(13,21,17)(14,22,18)(15,23,19)(16,24,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,16)(2,15)(3,14)(4,13)(5,18)(6,17)(7,20)(8,19)(9,22)(10,21)(11,24)(12,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3)(5,7)(9,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)>;

G:=Group( (1,11,7)(2,12,8)(3,9,5)(4,10,6)(13,21,17)(14,22,18)(15,23,19)(16,24,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,16)(2,15)(3,14)(4,13)(5,18)(6,17)(7,20)(8,19)(9,22)(10,21)(11,24)(12,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3)(5,7)(9,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23) );

G=PermutationGroup([[(1,11,7),(2,12,8),(3,9,5),(4,10,6),(13,21,17),(14,22,18),(15,23,19),(16,24,20)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,16),(2,15),(3,14),(4,13),(5,18),(6,17),(7,20),(8,19),(9,22),(10,21),(11,24),(12,23)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,3),(5,7),(9,11),(13,16),(14,15),(17,20),(18,19),(21,24),(22,23)]])

G:=TransitiveGroup(24,350);

48 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C4D4E4F6A6B6C6D6E···6L6M6N8A8B12A12B12C12D12E···12L24A24B24C24D
order122222223344444466666···666881212121212···1224242424
size112444481122444411224···4888822224···48888

48 irreducible representations

dim11111111111122222244
type++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4D4C3xD4C3xD4C3xD4D4:4D4C3xD4:4D4
kernelC3xD4:4D4C3xC4.D4C3xC4wrC2C3xC4:1D4C3xC8:C22C3x2+ 1+4D4:4D4C4.D4C4wrC2C4:1D4C8:C222+ 1+4C3xD4C3xQ8C22xC6D4Q8C23C3C1
# reps11212122424222244424

Matrix representation of C3xD4:4D4 in GL4(F7) generated by

4000
0400
0040
0004
,
3231
1010
4446
4350
,
1454
3440
5214
3341
,
0140
0105
0010
3420
,
1045
0155
0060
0006
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[3,1,4,4,2,0,4,3,3,1,4,5,1,0,6,0],[1,3,5,3,4,4,2,3,5,4,1,4,4,0,4,1],[0,0,0,3,1,1,0,4,4,0,1,2,0,5,0,0],[1,0,0,0,0,1,0,0,4,5,6,0,5,5,0,6] >;

C3xD4:4D4 in GAP, Magma, Sage, TeX

C_3\times D_4\rtimes_4D_4
% in TeX

G:=Group("C3xD4:4D4");
// GroupNames label

G:=SmallGroup(192,886);
// by ID

G=gap.SmallGroup(192,886);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,365,1094,4204,2111,1068,172,3036]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=b^-1*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<