direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×D4⋊4D4, 2+ 1+4⋊6C6, C4≀C2⋊1C6, D4⋊4(C3×D4), Q8⋊5(C3×D4), (C3×D4)⋊22D4, C4⋊1D4⋊3C6, C8⋊C22⋊1C6, C42⋊5(C2×C6), (C3×Q8)⋊22D4, C4.27(C6×D4), C4.D4⋊1C6, C23.5(C3×D4), (C22×C6).5D4, (C4×C12)⋊35C22, C12.388(C2×D4), (C6×D4)⋊28C22, M4(2)⋊1(C2×C6), C22.14(C6×D4), C6.100C22≀C2, (C2×C12).609C23, (C3×2+ 1+4)⋊7C2, (C3×M4(2))⋊14C22, (C3×C4≀C2)⋊5C2, (C2×D4)⋊2(C2×C6), (C3×C8⋊C22)⋊8C2, C4○D4.6(C2×C6), (C3×C4⋊1D4)⋊11C2, (C2×C6).409(C2×D4), (C3×C4.D4)⋊5C2, (C2×C4).4(C22×C6), C2.14(C3×C22≀C2), (C3×C4○D4).31C22, SmallGroup(192,886)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×D4⋊4D4
G = < a,b,c,d,e | a3=b4=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=b-1c, ece=bc, ede=d-1 >
Subgroups: 370 in 168 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C12, C12, C2×C6, C2×C6, C42, M4(2), D8, SD16, C2×D4, C2×D4, C4○D4, C4○D4, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×C6, C22×C6, C4.D4, C4≀C2, C4⋊1D4, C8⋊C22, 2+ 1+4, C4×C12, C3×M4(2), C3×D8, C3×SD16, C6×D4, C6×D4, C3×C4○D4, C3×C4○D4, D4⋊4D4, C3×C4.D4, C3×C4≀C2, C3×C4⋊1D4, C3×C8⋊C22, C3×2+ 1+4, C3×D4⋊4D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C3×D4, C22×C6, C22≀C2, C6×D4, D4⋊4D4, C3×C22≀C2, C3×D4⋊4D4
(1 11 7)(2 12 8)(3 9 5)(4 10 6)(13 21 17)(14 22 18)(15 23 19)(16 24 20)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 16)(2 15)(3 14)(4 13)(5 18)(6 17)(7 20)(8 19)(9 22)(10 21)(11 24)(12 23)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 3)(5 7)(9 11)(13 16)(14 15)(17 20)(18 19)(21 24)(22 23)
G:=sub<Sym(24)| (1,11,7)(2,12,8)(3,9,5)(4,10,6)(13,21,17)(14,22,18)(15,23,19)(16,24,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,16)(2,15)(3,14)(4,13)(5,18)(6,17)(7,20)(8,19)(9,22)(10,21)(11,24)(12,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3)(5,7)(9,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)>;
G:=Group( (1,11,7)(2,12,8)(3,9,5)(4,10,6)(13,21,17)(14,22,18)(15,23,19)(16,24,20), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,16)(2,15)(3,14)(4,13)(5,18)(6,17)(7,20)(8,19)(9,22)(10,21)(11,24)(12,23), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,3)(5,7)(9,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23) );
G=PermutationGroup([[(1,11,7),(2,12,8),(3,9,5),(4,10,6),(13,21,17),(14,22,18),(15,23,19),(16,24,20)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,16),(2,15),(3,14),(4,13),(5,18),(6,17),(7,20),(8,19),(9,22),(10,21),(11,24),(12,23)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,3),(5,7),(9,11),(13,16),(14,15),(17,20),(18,19),(21,24),(22,23)]])
G:=TransitiveGroup(24,350);
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | ··· | 6L | 6M | 6N | 8A | 8B | 12A | 12B | 12C | 12D | 12E | ··· | 12L | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 8 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | D4 | D4 | D4 | C3×D4 | C3×D4 | C3×D4 | D4⋊4D4 | C3×D4⋊4D4 |
kernel | C3×D4⋊4D4 | C3×C4.D4 | C3×C4≀C2 | C3×C4⋊1D4 | C3×C8⋊C22 | C3×2+ 1+4 | D4⋊4D4 | C4.D4 | C4≀C2 | C4⋊1D4 | C8⋊C22 | 2+ 1+4 | C3×D4 | C3×Q8 | C22×C6 | D4 | Q8 | C23 | C3 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 4 |
Matrix representation of C3×D4⋊4D4 ►in GL4(𝔽7) generated by
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
3 | 2 | 3 | 1 |
1 | 0 | 1 | 0 |
4 | 4 | 4 | 6 |
4 | 3 | 5 | 0 |
1 | 4 | 5 | 4 |
3 | 4 | 4 | 0 |
5 | 2 | 1 | 4 |
3 | 3 | 4 | 1 |
0 | 1 | 4 | 0 |
0 | 1 | 0 | 5 |
0 | 0 | 1 | 0 |
3 | 4 | 2 | 0 |
1 | 0 | 4 | 5 |
0 | 1 | 5 | 5 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 6 |
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[3,1,4,4,2,0,4,3,3,1,4,5,1,0,6,0],[1,3,5,3,4,4,2,3,5,4,1,4,4,0,4,1],[0,0,0,3,1,1,0,4,4,0,1,2,0,5,0,0],[1,0,0,0,0,1,0,0,4,5,6,0,5,5,0,6] >;
C3×D4⋊4D4 in GAP, Magma, Sage, TeX
C_3\times D_4\rtimes_4D_4
% in TeX
G:=Group("C3xD4:4D4");
// GroupNames label
G:=SmallGroup(192,886);
// by ID
G=gap.SmallGroup(192,886);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,365,1094,4204,2111,1068,172,3036]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=b^-1*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations