direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×D4.9D4, 2+ 1+4.4C6, C4≀C2⋊3C6, C42⋊6(C2×C6), D4.9(C3×D4), C4.29(C6×D4), (C3×D4).43D4, C4.D4⋊2C6, C4.4D4⋊2C6, C8.C22⋊1C6, (C3×Q8).43D4, Q8.14(C3×D4), (C22×C6).6D4, C23.6(C3×D4), (C4×C12)⋊36C22, C12.390(C2×D4), M4(2)⋊2(C2×C6), (C6×Q8)⋊27C22, C22.16(C6×D4), C6.102C22≀C2, (C2×C12).611C23, (C6×D4).182C22, (C3×M4(2))⋊15C22, (C3×2+ 1+4).3C2, (C3×C4≀C2)⋊7C2, (C2×Q8)⋊3(C2×C6), C4○D4.8(C2×C6), (C2×D4).7(C2×C6), (C3×C4.D4)⋊6C2, (C2×C6).411(C2×D4), (C3×C8.C22)⋊8C2, (C2×C4).6(C22×C6), C2.16(C3×C22≀C2), (C3×C4.4D4)⋊22C2, (C3×C4○D4).33C22, SmallGroup(192,888)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×D4.9D4
G = < a,b,c,d,e | a3=b4=c2=d4=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, dcd-1=b-1c, ece-1=bc, ede-1=b2d-1 >
Subgroups: 306 in 152 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, M4(2), SD16, Q16, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C22×C6, C4.D4, C4≀C2, C4.4D4, C8.C22, 2+ 1+4, C4×C12, C3×C22⋊C4, C3×M4(2), C3×SD16, C3×Q16, C6×D4, C6×D4, C6×Q8, C3×C4○D4, C3×C4○D4, D4.9D4, C3×C4.D4, C3×C4≀C2, C3×C4.4D4, C3×C8.C22, C3×2+ 1+4, C3×D4.9D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C3×D4, C22×C6, C22≀C2, C6×D4, D4.9D4, C3×C22≀C2, C3×D4.9D4
(1 24 16)(2 21 13)(3 22 14)(4 23 15)(5 42 34)(6 43 35)(7 44 36)(8 41 33)(9 28 17)(10 25 18)(11 26 19)(12 27 20)(29 45 37)(30 46 38)(31 47 39)(32 48 40)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 4)(2 3)(6 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 28)(26 27)(30 32)(33 35)(38 40)(41 43)(46 48)
(1 34 9 32)(2 35 10 29)(3 36 11 30)(4 33 12 31)(5 28 48 24)(6 25 45 21)(7 26 46 22)(8 27 47 23)(13 43 18 37)(14 44 19 38)(15 41 20 39)(16 42 17 40)
(1 30 3 32)(2 29 4 31)(5 28 7 26)(6 27 8 25)(9 36 11 34)(10 35 12 33)(13 37 15 39)(14 40 16 38)(17 44 19 42)(18 43 20 41)(21 45 23 47)(22 48 24 46)
G:=sub<Sym(48)| (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,42,34)(6,43,35)(7,44,36)(8,41,33)(9,28,17)(10,25,18)(11,26,19)(12,27,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,4)(2,3)(6,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,28)(26,27)(30,32)(33,35)(38,40)(41,43)(46,48), (1,34,9,32)(2,35,10,29)(3,36,11,30)(4,33,12,31)(5,28,48,24)(6,25,45,21)(7,26,46,22)(8,27,47,23)(13,43,18,37)(14,44,19,38)(15,41,20,39)(16,42,17,40), (1,30,3,32)(2,29,4,31)(5,28,7,26)(6,27,8,25)(9,36,11,34)(10,35,12,33)(13,37,15,39)(14,40,16,38)(17,44,19,42)(18,43,20,41)(21,45,23,47)(22,48,24,46)>;
G:=Group( (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,42,34)(6,43,35)(7,44,36)(8,41,33)(9,28,17)(10,25,18)(11,26,19)(12,27,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,4)(2,3)(6,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,28)(26,27)(30,32)(33,35)(38,40)(41,43)(46,48), (1,34,9,32)(2,35,10,29)(3,36,11,30)(4,33,12,31)(5,28,48,24)(6,25,45,21)(7,26,46,22)(8,27,47,23)(13,43,18,37)(14,44,19,38)(15,41,20,39)(16,42,17,40), (1,30,3,32)(2,29,4,31)(5,28,7,26)(6,27,8,25)(9,36,11,34)(10,35,12,33)(13,37,15,39)(14,40,16,38)(17,44,19,42)(18,43,20,41)(21,45,23,47)(22,48,24,46) );
G=PermutationGroup([[(1,24,16),(2,21,13),(3,22,14),(4,23,15),(5,42,34),(6,43,35),(7,44,36),(8,41,33),(9,28,17),(10,25,18),(11,26,19),(12,27,20),(29,45,37),(30,46,38),(31,47,39),(32,48,40)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,4),(2,3),(6,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,28),(26,27),(30,32),(33,35),(38,40),(41,43),(46,48)], [(1,34,9,32),(2,35,10,29),(3,36,11,30),(4,33,12,31),(5,28,48,24),(6,25,45,21),(7,26,46,22),(8,27,47,23),(13,43,18,37),(14,44,19,38),(15,41,20,39),(16,42,17,40)], [(1,30,3,32),(2,29,4,31),(5,28,7,26),(6,27,8,25),(9,36,11,34),(10,35,12,33),(13,37,15,39),(14,40,16,38),(17,44,19,42),(18,43,20,41),(21,45,23,47),(22,48,24,46)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 6A | 6B | 6C | 6D | 6E | ··· | 6L | 8A | 8B | 12A | 12B | 12C | 12D | 12E | ··· | 12L | 12M | 12N | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 1 | 1 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | |||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | D4 | D4 | D4 | C3×D4 | C3×D4 | C3×D4 | D4.9D4 | C3×D4.9D4 |
kernel | C3×D4.9D4 | C3×C4.D4 | C3×C4≀C2 | C3×C4.4D4 | C3×C8.C22 | C3×2+ 1+4 | D4.9D4 | C4.D4 | C4≀C2 | C4.4D4 | C8.C22 | 2+ 1+4 | C3×D4 | C3×Q8 | C22×C6 | D4 | Q8 | C23 | C3 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 4 |
Matrix representation of C3×D4.9D4 ►in GL6(𝔽73)
8 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
55 | 69 | 0 | 0 | 0 | 0 |
63 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 23 | 23 | 50 | 23 |
0 | 0 | 23 | 23 | 23 | 50 |
0 | 0 | 23 | 50 | 23 | 23 |
0 | 0 | 50 | 23 | 23 | 23 |
18 | 4 | 0 | 0 | 0 | 0 |
47 | 55 | 0 | 0 | 0 | 0 |
0 | 0 | 23 | 23 | 50 | 23 |
0 | 0 | 23 | 23 | 23 | 50 |
0 | 0 | 50 | 23 | 50 | 50 |
0 | 0 | 23 | 50 | 50 | 50 |
G:=sub<GL(6,GF(73))| [8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,1,0,0,0,0,0,0,1,0,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,1,0,0,0,0,0,0,72,0,0],[55,63,0,0,0,0,69,18,0,0,0,0,0,0,23,23,23,50,0,0,23,23,50,23,0,0,50,23,23,23,0,0,23,50,23,23],[18,47,0,0,0,0,4,55,0,0,0,0,0,0,23,23,50,23,0,0,23,23,23,50,0,0,50,23,50,50,0,0,23,50,50,50] >;
C3×D4.9D4 in GAP, Magma, Sage, TeX
C_3\times D_4._9D_4
% in TeX
G:=Group("C3xD4.9D4");
// GroupNames label
G:=SmallGroup(192,888);
// by ID
G=gap.SmallGroup(192,888);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,672,365,1094,4204,2111,1068,172,3036]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^4=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c,e*c*e^-1=b*c,e*d*e^-1=b^2*d^-1>;
// generators/relations