Copied to
clipboard

G = C3×D4.9D4order 192 = 26·3

Direct product of C3 and D4.9D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×D4.9D4, 2+ 1+4.4C6, C4≀C23C6, C426(C2×C6), D4.9(C3×D4), C4.29(C6×D4), (C3×D4).43D4, C4.D42C6, C4.4D42C6, C8.C221C6, (C3×Q8).43D4, Q8.14(C3×D4), (C22×C6).6D4, C23.6(C3×D4), (C4×C12)⋊36C22, C12.390(C2×D4), M4(2)⋊2(C2×C6), (C6×Q8)⋊27C22, C22.16(C6×D4), C6.102C22≀C2, (C2×C12).611C23, (C6×D4).182C22, (C3×M4(2))⋊15C22, (C3×2+ 1+4).3C2, (C3×C4≀C2)⋊7C2, (C2×Q8)⋊3(C2×C6), C4○D4.8(C2×C6), (C2×D4).7(C2×C6), (C3×C4.D4)⋊6C2, (C2×C6).411(C2×D4), (C3×C8.C22)⋊8C2, (C2×C4).6(C22×C6), C2.16(C3×C22≀C2), (C3×C4.4D4)⋊22C2, (C3×C4○D4).33C22, SmallGroup(192,888)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C3×D4.9D4
C1C2C22C2×C4C2×C12C6×Q8C3×C8.C22 — C3×D4.9D4
C1C2C2×C4 — C3×D4.9D4
C1C6C2×C12 — C3×D4.9D4

Generators and relations for C3×D4.9D4
 G = < a,b,c,d,e | a3=b4=c2=d4=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, dcd-1=b-1c, ece-1=bc, ede-1=b2d-1 >

Subgroups: 306 in 152 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, M4(2), SD16, Q16, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C22×C6, C4.D4, C4≀C2, C4.4D4, C8.C22, 2+ 1+4, C4×C12, C3×C22⋊C4, C3×M4(2), C3×SD16, C3×Q16, C6×D4, C6×D4, C6×Q8, C3×C4○D4, C3×C4○D4, D4.9D4, C3×C4.D4, C3×C4≀C2, C3×C4.4D4, C3×C8.C22, C3×2+ 1+4, C3×D4.9D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C3×D4, C22×C6, C22≀C2, C6×D4, D4.9D4, C3×C22≀C2, C3×D4.9D4

Smallest permutation representation of C3×D4.9D4
On 48 points
Generators in S48
(1 24 16)(2 21 13)(3 22 14)(4 23 15)(5 42 34)(6 43 35)(7 44 36)(8 41 33)(9 28 17)(10 25 18)(11 26 19)(12 27 20)(29 45 37)(30 46 38)(31 47 39)(32 48 40)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 4)(2 3)(6 8)(9 10)(11 12)(13 14)(15 16)(17 18)(19 20)(21 22)(23 24)(25 28)(26 27)(30 32)(33 35)(38 40)(41 43)(46 48)
(1 34 9 32)(2 35 10 29)(3 36 11 30)(4 33 12 31)(5 28 48 24)(6 25 45 21)(7 26 46 22)(8 27 47 23)(13 43 18 37)(14 44 19 38)(15 41 20 39)(16 42 17 40)
(1 30 3 32)(2 29 4 31)(5 28 7 26)(6 27 8 25)(9 36 11 34)(10 35 12 33)(13 37 15 39)(14 40 16 38)(17 44 19 42)(18 43 20 41)(21 45 23 47)(22 48 24 46)

G:=sub<Sym(48)| (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,42,34)(6,43,35)(7,44,36)(8,41,33)(9,28,17)(10,25,18)(11,26,19)(12,27,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,4)(2,3)(6,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,28)(26,27)(30,32)(33,35)(38,40)(41,43)(46,48), (1,34,9,32)(2,35,10,29)(3,36,11,30)(4,33,12,31)(5,28,48,24)(6,25,45,21)(7,26,46,22)(8,27,47,23)(13,43,18,37)(14,44,19,38)(15,41,20,39)(16,42,17,40), (1,30,3,32)(2,29,4,31)(5,28,7,26)(6,27,8,25)(9,36,11,34)(10,35,12,33)(13,37,15,39)(14,40,16,38)(17,44,19,42)(18,43,20,41)(21,45,23,47)(22,48,24,46)>;

G:=Group( (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,42,34)(6,43,35)(7,44,36)(8,41,33)(9,28,17)(10,25,18)(11,26,19)(12,27,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,4)(2,3)(6,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,28)(26,27)(30,32)(33,35)(38,40)(41,43)(46,48), (1,34,9,32)(2,35,10,29)(3,36,11,30)(4,33,12,31)(5,28,48,24)(6,25,45,21)(7,26,46,22)(8,27,47,23)(13,43,18,37)(14,44,19,38)(15,41,20,39)(16,42,17,40), (1,30,3,32)(2,29,4,31)(5,28,7,26)(6,27,8,25)(9,36,11,34)(10,35,12,33)(13,37,15,39)(14,40,16,38)(17,44,19,42)(18,43,20,41)(21,45,23,47)(22,48,24,46) );

G=PermutationGroup([[(1,24,16),(2,21,13),(3,22,14),(4,23,15),(5,42,34),(6,43,35),(7,44,36),(8,41,33),(9,28,17),(10,25,18),(11,26,19),(12,27,20),(29,45,37),(30,46,38),(31,47,39),(32,48,40)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,4),(2,3),(6,8),(9,10),(11,12),(13,14),(15,16),(17,18),(19,20),(21,22),(23,24),(25,28),(26,27),(30,32),(33,35),(38,40),(41,43),(46,48)], [(1,34,9,32),(2,35,10,29),(3,36,11,30),(4,33,12,31),(5,28,48,24),(6,25,45,21),(7,26,46,22),(8,27,47,23),(13,43,18,37),(14,44,19,38),(15,41,20,39),(16,42,17,40)], [(1,30,3,32),(2,29,4,31),(5,28,7,26),(6,27,8,25),(9,36,11,34),(10,35,12,33),(13,37,15,39),(14,40,16,38),(17,44,19,42),(18,43,20,41),(21,45,23,47),(22,48,24,46)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F3A3B4A4B4C4D4E4F4G6A6B6C6D6E···6L8A8B12A12B12C12D12E···12L12M12N24A24B24C24D
order122222233444444466666···6881212121212···12121224242424
size112444411224444811224···48822224···4888888

48 irreducible representations

dim11111111111122222244
type+++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4D4C3×D4C3×D4C3×D4D4.9D4C3×D4.9D4
kernelC3×D4.9D4C3×C4.D4C3×C4≀C2C3×C4.4D4C3×C8.C22C3×2+ 1+4D4.9D4C4.D4C4≀C2C4.4D4C8.C222+ 1+4C3×D4C3×Q8C22×C6D4Q8C23C3C1
# reps11212122424222244424

Matrix representation of C3×D4.9D4 in GL6(𝔽73)

800000
080000
001000
000100
000010
000001
,
100000
010000
000010
000001
0072000
0007200
,
7200000
0720000
000010
0000072
001000
0007200
,
55690000
63180000
0023235023
0023232350
0023502323
0050232323
,
1840000
47550000
0023235023
0023232350
0050235050
0023505050

G:=sub<GL(6,GF(73))| [8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,1,0,0,0,0,0,0,1,0,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,1,0,0,0,0,0,0,72,0,0],[55,63,0,0,0,0,69,18,0,0,0,0,0,0,23,23,23,50,0,0,23,23,50,23,0,0,50,23,23,23,0,0,23,50,23,23],[18,47,0,0,0,0,4,55,0,0,0,0,0,0,23,23,50,23,0,0,23,23,23,50,0,0,50,23,50,50,0,0,23,50,50,50] >;

C3×D4.9D4 in GAP, Magma, Sage, TeX

C_3\times D_4._9D_4
% in TeX

G:=Group("C3xD4.9D4");
// GroupNames label

G:=SmallGroup(192,888);
// by ID

G=gap.SmallGroup(192,888);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,672,365,1094,4204,2111,1068,172,3036]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^4=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c,e*c*e^-1=b*c,e*d*e^-1=b^2*d^-1>;
// generators/relations

׿
×
𝔽