Copied to
clipboard

?

G = C2×Q8⋊A4order 192 = 26·3

Direct product of C2 and Q8⋊A4

direct product, non-abelian, soluble

Aliases: C2×Q8⋊A4, C24.11A4, C233SL2(𝔽3), Q81(C2×A4), (C2×Q8)⋊3A4, (Q8×C23)⋊3C3, (C22×Q8)⋊8C6, C23.22(C2×A4), C22⋊(C2×SL2(𝔽3)), C22.4(C22⋊A4), C2.2(C2×C22⋊A4), SmallGroup(192,1506)

Series: Derived Chief Lower central Upper central

C1C2C22×Q8 — C2×Q8⋊A4
C1C2Q8C22×Q8Q8⋊A4 — C2×Q8⋊A4
C22×Q8 — C2×Q8⋊A4

Subgroups: 559 in 175 conjugacy classes, 22 normal (10 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×8], C22 [×2], C22 [×11], C6 [×3], C2×C4 [×28], Q8 [×4], Q8 [×20], C23, C23 [×2], C23 [×4], A4, C2×C6, C22×C4 [×14], C2×Q8 [×4], C2×Q8 [×36], C24, SL2(𝔽3) [×4], C2×A4 [×3], C23×C4, C22×Q8, C22×Q8 [×9], C2×SL2(𝔽3) [×4], C22×A4, Q8×C23, Q8⋊A4, C2×Q8⋊A4

Quotients:
C1, C2, C3, C6, A4 [×5], SL2(𝔽3) [×2], C2×A4 [×5], C2×SL2(𝔽3), C22⋊A4, Q8⋊A4 [×2], C2×C22⋊A4, C2×Q8⋊A4

Generators and relations
 G = < a,b,c,d,e,f | a2=b4=d2=e2=f3=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc-1=b-1, bd=db, be=eb, fbf-1=c, cd=dc, ce=ec, fcf-1=bc, fdf-1=de=ed, fef-1=d >

Smallest permutation representation
On 48 points
Generators in S48
(1 27)(2 28)(3 25)(4 26)(5 31)(6 32)(7 29)(8 30)(9 35)(10 36)(11 33)(12 34)(13 39)(14 40)(15 37)(16 38)(17 43)(18 44)(19 41)(20 42)(21 47)(22 48)(23 45)(24 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 7 3 5)(2 6 4 8)(9 13 11 15)(10 16 12 14)(17 24 19 22)(18 23 20 21)(25 31 27 29)(26 30 28 32)(33 37 35 39)(34 40 36 38)(41 48 43 46)(42 47 44 45)
(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)
(1 19 13)(2 21 11)(3 17 15)(4 23 9)(5 18 12)(6 22 14)(7 20 10)(8 24 16)(25 43 37)(26 45 35)(27 41 39)(28 47 33)(29 42 36)(30 46 38)(31 44 34)(32 48 40)

G:=sub<Sym(48)| (1,27)(2,28)(3,25)(4,26)(5,31)(6,32)(7,29)(8,30)(9,35)(10,36)(11,33)(12,34)(13,39)(14,40)(15,37)(16,38)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,7,3,5)(2,6,4,8)(9,13,11,15)(10,16,12,14)(17,24,19,22)(18,23,20,21)(25,31,27,29)(26,30,28,32)(33,37,35,39)(34,40,36,38)(41,48,43,46)(42,47,44,45), (9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40), (1,19,13)(2,21,11)(3,17,15)(4,23,9)(5,18,12)(6,22,14)(7,20,10)(8,24,16)(25,43,37)(26,45,35)(27,41,39)(28,47,33)(29,42,36)(30,46,38)(31,44,34)(32,48,40)>;

G:=Group( (1,27)(2,28)(3,25)(4,26)(5,31)(6,32)(7,29)(8,30)(9,35)(10,36)(11,33)(12,34)(13,39)(14,40)(15,37)(16,38)(17,43)(18,44)(19,41)(20,42)(21,47)(22,48)(23,45)(24,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,7,3,5)(2,6,4,8)(9,13,11,15)(10,16,12,14)(17,24,19,22)(18,23,20,21)(25,31,27,29)(26,30,28,32)(33,37,35,39)(34,40,36,38)(41,48,43,46)(42,47,44,45), (9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40), (1,19,13)(2,21,11)(3,17,15)(4,23,9)(5,18,12)(6,22,14)(7,20,10)(8,24,16)(25,43,37)(26,45,35)(27,41,39)(28,47,33)(29,42,36)(30,46,38)(31,44,34)(32,48,40) );

G=PermutationGroup([(1,27),(2,28),(3,25),(4,26),(5,31),(6,32),(7,29),(8,30),(9,35),(10,36),(11,33),(12,34),(13,39),(14,40),(15,37),(16,38),(17,43),(18,44),(19,41),(20,42),(21,47),(22,48),(23,45),(24,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,7,3,5),(2,6,4,8),(9,13,11,15),(10,16,12,14),(17,24,19,22),(18,23,20,21),(25,31,27,29),(26,30,28,32),(33,37,35,39),(34,40,36,38),(41,48,43,46),(42,47,44,45)], [(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40)], [(1,19,13),(2,21,11),(3,17,15),(4,23,9),(5,18,12),(6,22,14),(7,20,10),(8,24,16),(25,43,37),(26,45,35),(27,41,39),(28,47,33),(29,42,36),(30,46,38),(31,44,34),(32,48,40)])

Matrix representation G ⊆ GL7(𝔽13)

1000000
0100000
00120000
00012000
0000100
0000010
0000001
,
10900000
9300000
00109000
0093000
00001200
00001201
00001210
,
0100000
12000000
0001000
00120000
00000112
00001012
00000012
,
1000000
0100000
0010000
0001000
00000121
00000120
00001120
,
1000000
0100000
0010000
0001000
00000112
00001012
00000012
,
1000000
9300000
0090000
0031000
0000001
0000100
0000010

G:=sub<GL(7,GF(13))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[10,9,0,0,0,0,0,9,3,0,0,0,0,0,0,0,10,9,0,0,0,0,0,9,3,0,0,0,0,0,0,0,12,12,12,0,0,0,0,0,0,1,0,0,0,0,0,1,0],[0,12,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,12,12,12],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12,12,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,12,12,12],[1,9,0,0,0,0,0,0,3,0,0,0,0,0,0,0,9,3,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0] >;

Character table of C2×Q8⋊A4

 class 12A2B2C2D2E2F2G3A3B4A4B4C4D4E4F4G4H6A6B6C6D6E6F
 size 11113333161666666666161616161616
ρ1111111111111111111111111    trivial
ρ21-11-1-111-111-11111-1-1-111-1-1-1-1    linear of order 2
ρ31-11-1-111-1ζ3ζ32-11111-1-1-1ζ32ζ3ζ6ζ6ζ65ζ65    linear of order 6
ρ411111111ζ32ζ311111111ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ51-11-1-111-1ζ32ζ3-11111-1-1-1ζ3ζ32ζ65ζ65ζ6ζ6    linear of order 6
ρ611111111ζ3ζ3211111111ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ722-2-2-22-22-1-10000000011-11-11    symplectic lifted from SL2(𝔽3), Schur index 2
ρ82-2-2222-2-2-1-100000000111-11-1    symplectic lifted from SL2(𝔽3), Schur index 2
ρ92-2-2222-2-2ζ6ζ6500000000ζ3ζ32ζ3ζ65ζ32ζ6    complex lifted from SL2(𝔽3)
ρ102-2-2222-2-2ζ65ζ600000000ζ32ζ3ζ32ζ6ζ3ζ65    complex lifted from SL2(𝔽3)
ρ1122-2-2-22-22ζ6ζ6500000000ζ3ζ32ζ65ζ3ζ6ζ32    complex lifted from SL2(𝔽3)
ρ1222-2-2-22-22ζ65ζ600000000ζ32ζ3ζ6ζ32ζ65ζ3    complex lifted from SL2(𝔽3)
ρ133333-1-1-1-100-1-13-1-13-1-1000000    orthogonal lifted from A4
ρ143-33-31-1-11001-1-13-11-31000000    orthogonal lifted from C2×A4
ρ153333-1-1-1-100-1-1-13-1-13-1000000    orthogonal lifted from A4
ρ163-33-31-1-11001-13-1-1-311000000    orthogonal lifted from C2×A4
ρ173-33-3-333-3001-1-1-1-1111000000    orthogonal lifted from C2×A4
ρ183-33-31-1-1100-3-1-1-13111000000    orthogonal lifted from C2×A4
ρ193-33-31-1-110013-1-1-111-3000000    orthogonal lifted from C2×A4
ρ203333-1-1-1-1003-1-1-13-1-1-1000000    orthogonal lifted from A4
ρ213333333300-1-1-1-1-1-1-1-1000000    orthogonal lifted from A4
ρ223333-1-1-1-100-13-1-1-1-1-13000000    orthogonal lifted from A4
ρ236-6-66-2-2220000000000000000    symplectic lifted from Q8⋊A4, Schur index 2
ρ2466-6-62-22-20000000000000000    symplectic lifted from Q8⋊A4, Schur index 2

In GAP, Magma, Sage, TeX

C_2\times Q_8\rtimes A_4
% in TeX

G:=Group("C2xQ8:A4");
// GroupNames label

G:=SmallGroup(192,1506);
// by ID

G=gap.SmallGroup(192,1506);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,135,262,851,172,1524,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=d^2=e^2=f^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,f*b*f^-1=c,c*d=d*c,c*e=e*c,f*c*f^-1=b*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
×
𝔽