Copied to
clipboard

G = C424C4⋊C3order 192 = 26·3

The semidirect product of C424C4 and C3 acting faithfully

non-abelian, soluble

Aliases: C424C4⋊C3, C4.1(C42⋊C3), (C22×C4).8A4, C23.10(C2×A4), C22.1(C4.A4), C2.C42.3C6, C23.3A4.3C2, C2.3(C2×C42⋊C3), SmallGroup(192,190)

Series: Derived Chief Lower central Upper central

C1C2C2.C42 — C424C4⋊C3
C1C2C23C2.C42C23.3A4 — C424C4⋊C3
C2.C42 — C424C4⋊C3
C1C4

Generators and relations for C424C4⋊C3
 G = < a,b,c,d | a4=b4=c4=d3=1, ab=ba, cac-1=ab2, dad-1=a2c-1, bc=cb, dbd-1=a2b-1, dcd-1=a-1b2c >

3C2
3C2
16C3
3C22
3C22
3C4
6C4
6C4
6C4
6C4
16C6
3C2×C4
3C2×C4
3C2×C4
3C2×C4
3C2×C4
3C2×C4
6C2×C4
6C2×C4
6C2×C4
6C2×C4
4A4
16C12
3C42
3C42
3C42
3C22×C4
3C42
3C22×C4
4C2×A4
3C2×C42
3C2.C42
4C4×A4

Character table of C424C4⋊C3

 class 12A2B2C3A3B4A4B4C4D4E4F4G4H4I4J4K4L6A6B12A12B12C12D
 size 11331616113366666666161616161616
ρ1111111111111111111111111    trivial
ρ2111111-1-1-1-11111-1-1-1-111-1-1-1-1    linear of order 2
ρ31111ζ32ζ3111111111111ζ32ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ41111ζ32ζ3-1-1-1-11111-1-1-1-1ζ32ζ3ζ65ζ6ζ65ζ6    linear of order 6
ρ51111ζ3ζ32111111111111ζ3ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ61111ζ3ζ32-1-1-1-11111-1-1-1-1ζ3ζ32ζ6ζ65ζ6ζ65    linear of order 6
ρ72-22-2-1-1-2i2i-2i2i0000000011-i-iii    complex lifted from C4.A4
ρ82-22-2-1-12i-2i2i-2i0000000011ii-i-i    complex lifted from C4.A4
ρ92-22-2ζ65ζ62i-2i2i-2i00000000ζ3ζ32ζ4ζ32ζ4ζ3ζ43ζ32ζ43ζ3    complex lifted from C4.A4
ρ102-22-2ζ6ζ65-2i2i-2i2i00000000ζ32ζ3ζ43ζ3ζ43ζ32ζ4ζ3ζ4ζ32    complex lifted from C4.A4
ρ112-22-2ζ6ζ652i-2i2i-2i00000000ζ32ζ3ζ4ζ3ζ4ζ32ζ43ζ3ζ43ζ32    complex lifted from C4.A4
ρ122-22-2ζ65ζ6-2i2i-2i2i00000000ζ3ζ32ζ43ζ32ζ43ζ3ζ4ζ32ζ4ζ3    complex lifted from C4.A4
ρ133333003333-1-1-1-1-1-1-1-1000000    orthogonal lifted from A4
ρ14333300-3-3-3-3-1-1-1-11111000000    orthogonal lifted from C2×A4
ρ1533-1-10033-1-1-1-2i-1+2i11-1-2i11-1+2i000000    complex lifted from C42⋊C3
ρ1633-1-100-3-31111-1+2i-1-2i-11-2i1+2i-1000000    complex lifted from C2×C42⋊C3
ρ1733-1-10033-1-111-1+2i-1-2i1-1+2i-1-2i1000000    complex lifted from C42⋊C3
ρ1833-1-100-3-31111-1-2i-1+2i-11+2i1-2i-1000000    complex lifted from C2×C42⋊C3
ρ1933-1-10033-1-1-1+2i-1-2i11-1+2i11-1-2i000000    complex lifted from C42⋊C3
ρ2033-1-10033-1-111-1-2i-1+2i1-1-2i-1+2i1000000    complex lifted from C42⋊C3
ρ2133-1-100-3-311-1+2i-1-2i111-2i-1-11+2i000000    complex lifted from C2×C42⋊C3
ρ2233-1-100-3-311-1-2i-1+2i111+2i-1-11-2i000000    complex lifted from C2×C42⋊C3
ρ236-6-22006i-6i-2i2i00000000000000    complex faithful
ρ246-6-2200-6i6i2i-2i00000000000000    complex faithful

Permutation representations of C424C4⋊C3
On 24 points - transitive group 24T301
Generators in S24
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)
(1 16 13 12)(2 15 14 11)(3 9 5 8)(4 10 6 7)(17 18 19 20)(21 24 23 22)
(1 12 13 16)(2 15 14 11)(3 7)(4 9)(5 10)(6 8)(17 21)(18 24)(19 23)(20 22)
(1 24 6)(2 17 8)(3 11 18)(4 13 22)(5 15 20)(7 12 23)(9 14 19)(10 16 21)

G:=sub<Sym(24)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,16,13,12)(2,15,14,11)(3,9,5,8)(4,10,6,7)(17,18,19,20)(21,24,23,22), (1,12,13,16)(2,15,14,11)(3,7)(4,9)(5,10)(6,8)(17,21)(18,24)(19,23)(20,22), (1,24,6)(2,17,8)(3,11,18)(4,13,22)(5,15,20)(7,12,23)(9,14,19)(10,16,21)>;

G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,16,13,12)(2,15,14,11)(3,9,5,8)(4,10,6,7)(17,18,19,20)(21,24,23,22), (1,12,13,16)(2,15,14,11)(3,7)(4,9)(5,10)(6,8)(17,21)(18,24)(19,23)(20,22), (1,24,6)(2,17,8)(3,11,18)(4,13,22)(5,15,20)(7,12,23)(9,14,19)(10,16,21) );

G=PermutationGroup([(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24)], [(1,16,13,12),(2,15,14,11),(3,9,5,8),(4,10,6,7),(17,18,19,20),(21,24,23,22)], [(1,12,13,16),(2,15,14,11),(3,7),(4,9),(5,10),(6,8),(17,21),(18,24),(19,23),(20,22)], [(1,24,6),(2,17,8),(3,11,18),(4,13,22),(5,15,20),(7,12,23),(9,14,19),(10,16,21)])

G:=TransitiveGroup(24,301);

On 24 points - transitive group 24T309
Generators in S24
(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)(17 18 19 20)(21 22 23 24)
(1 2 4 3)(5 12 6 11)(7 10 13 15)(8 9 14 16)(17 22 19 24)(18 23 20 21)
(1 11)(2 5)(3 6)(4 12)(7 8 13 14)(9 15 16 10)(17 19)(22 24)
(1 8 17)(2 16 22)(3 9 24)(4 14 19)(5 15 23)(6 10 21)(7 18 11)(12 13 20)

G:=sub<Sym(24)| (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,2,4,3)(5,12,6,11)(7,10,13,15)(8,9,14,16)(17,22,19,24)(18,23,20,21), (1,11)(2,5)(3,6)(4,12)(7,8,13,14)(9,15,16,10)(17,19)(22,24), (1,8,17)(2,16,22)(3,9,24)(4,14,19)(5,15,23)(6,10,21)(7,18,11)(12,13,20)>;

G:=Group( (5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18,19,20)(21,22,23,24), (1,2,4,3)(5,12,6,11)(7,10,13,15)(8,9,14,16)(17,22,19,24)(18,23,20,21), (1,11)(2,5)(3,6)(4,12)(7,8,13,14)(9,15,16,10)(17,19)(22,24), (1,8,17)(2,16,22)(3,9,24)(4,14,19)(5,15,23)(6,10,21)(7,18,11)(12,13,20) );

G=PermutationGroup([(5,6),(7,8),(9,10),(11,12),(13,14),(15,16),(17,18,19,20),(21,22,23,24)], [(1,2,4,3),(5,12,6,11),(7,10,13,15),(8,9,14,16),(17,22,19,24),(18,23,20,21)], [(1,11),(2,5),(3,6),(4,12),(7,8,13,14),(9,15,16,10),(17,19),(22,24)], [(1,8,17),(2,16,22),(3,9,24),(4,14,19),(5,15,23),(6,10,21),(7,18,11),(12,13,20)])

G:=TransitiveGroup(24,309);

Matrix representation of C424C4⋊C3 in GL5(𝔽13)

93000
34000
00500
00080
00001
,
50000
05000
00100
000120
00001
,
109000
93000
00800
000120
00008
,
10000
93000
00003
00300
00030

G:=sub<GL(5,GF(13))| [9,3,0,0,0,3,4,0,0,0,0,0,5,0,0,0,0,0,8,0,0,0,0,0,1],[5,0,0,0,0,0,5,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,1],[10,9,0,0,0,9,3,0,0,0,0,0,8,0,0,0,0,0,12,0,0,0,0,0,8],[1,9,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,3,0,0,3,0,0] >;

C424C4⋊C3 in GAP, Magma, Sage, TeX

C_4^2\rtimes_4C_4\rtimes C_3
% in TeX

G:=Group("C4^2:4C4:C3");
// GroupNames label

G:=SmallGroup(192,190);
// by ID

G=gap.SmallGroup(192,190);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-2,2,-2,672,135,268,934,521,80,2531,3540]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=d^3=1,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^2*c^-1,b*c=c*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=a^-1*b^2*c>;
// generators/relations

Export

Subgroup lattice of C424C4⋊C3 in TeX
Character table of C424C4⋊C3 in TeX

׿
×
𝔽