Extensions 1→N→G→Q→1 with N=C3:D4 and Q=C2xC4

Direct product G=NxQ with N=C3:D4 and Q=C2xC4
dρLabelID
C2xC4xC3:D496C2xC4xC3:D4192,1347

Semidirect products G=N:Q with N=C3:D4 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
C3:D4:1(C2xC4) = C4xD4:2S3φ: C2xC4/C4C2 ⊆ Out C3:D496C3:D4:1(C2xC4)192,1095
C3:D4:2(C2xC4) = C4xS3xD4φ: C2xC4/C4C2 ⊆ Out C3:D448C3:D4:2(C2xC4)192,1103
C3:D4:3(C2xC4) = C42:13D6φ: C2xC4/C4C2 ⊆ Out C3:D448C3:D4:3(C2xC4)192,1104
C3:D4:4(C2xC4) = C42.108D6φ: C2xC4/C4C2 ⊆ Out C3:D496C3:D4:4(C2xC4)192,1105
C3:D4:5(C2xC4) = C2xDic3:4D4φ: C2xC4/C22C2 ⊆ Out C3:D496C3:D4:5(C2xC4)192,1044
C3:D4:6(C2xC4) = C42.188D6φ: C2xC4/C22C2 ⊆ Out C3:D496C3:D4:6(C2xC4)192,1081
C3:D4:7(C2xC4) = C42.91D6φ: C2xC4/C22C2 ⊆ Out C3:D496C3:D4:7(C2xC4)192,1082
C3:D4:8(C2xC4) = C4xC4oD12φ: trivial image96C3:D4:8(C2xC4)192,1033
C3:D4:9(C2xC4) = C24.35D6φ: trivial image48C3:D4:9(C2xC4)192,1045
C3:D4:10(C2xC4) = C6.82+ 1+4φ: trivial image96C3:D4:10(C2xC4)192,1063

Non-split extensions G=N.Q with N=C3:D4 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
C3:D4.1(C2xC4) = S3xC8oD4φ: C2xC4/C4C2 ⊆ Out C3:D4484C3:D4.1(C2xC4)192,1308
C3:D4.2(C2xC4) = M4(2):28D6φ: C2xC4/C4C2 ⊆ Out C3:D4484C3:D4.2(C2xC4)192,1309
C3:D4.3(C2xC4) = C2xD12.C4φ: C2xC4/C22C2 ⊆ Out C3:D496C3:D4.3(C2xC4)192,1303
C3:D4.4(C2xC4) = M4(2):26D6φ: C2xC4/C22C2 ⊆ Out C3:D4484C3:D4.4(C2xC4)192,1304
C3:D4.5(C2xC4) = C2xC8oD12φ: trivial image96C3:D4.5(C2xC4)192,1297

׿
x
:
Z
F
o
wr
Q
<