Copied to
clipboard

G = C2xC8oD12order 192 = 26·3

Direct product of C2 and C8oD12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xC8oD12, C24.79C23, C12.67C24, (C2xC8):37D6, C6:1(C8oD4), (C22xC8):17S3, C4oD12.7C4, C3:C8.31C23, (S3xC8):19C22, (C2xC24):51C22, (C22xC24):22C2, D12.30(C2xC4), (C2xD12).19C4, C23.44(C4xS3), C6.30(C23xC4), C8.65(C22xS3), C4.66(S3xC23), C8:S3:21C22, (C4xS3).34C23, (C2xDic6).19C4, Dic6.32(C2xC4), D6.12(C22xC4), (C22xC4).457D6, C12.121(C22xC4), (C2xC12).880C23, C4oD12.58C22, C4.Dic3:39C22, Dic3.12(C22xC4), (C22xC12).544C22, C3:1(C2xC8oD4), (S3xC2xC8):25C2, C4.121(S3xC2xC4), C3:D4.5(C2xC4), (C2xC8:S3):29C2, C22.11(S3xC2xC4), C2.31(S3xC22xC4), (C4xS3).23(C2xC4), (C2xC4).119(C4xS3), (C2xC3:D4).17C4, (C2xC12).236(C2xC4), (C2xC4oD12).27C2, (C2xC3:C8).327C22, (S3xC2xC4).302C22, (C2xC4.Dic3):33C2, (C22xS3).45(C2xC4), (C22xC6).103(C2xC4), (C2xC6).156(C22xC4), (C2xC4).824(C22xS3), (C2xDic3).71(C2xC4), SmallGroup(192,1297)

Series: Derived Chief Lower central Upper central

C1C6 — C2xC8oD12
C1C3C6C12C4xS3S3xC2xC4C2xC4oD12 — C2xC8oD12
C3C6 — C2xC8oD12
C1C2xC8C22xC8

Generators and relations for C2xC8oD12
 G = < a,b,c,d | a2=b8=d2=1, c6=b4, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b4c5 >

Subgroups: 504 in 266 conjugacy classes, 151 normal (29 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, S3, C6, C6, C6, C8, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC6, C2xC8, C2xC8, C2xC8, M4(2), C22xC4, C22xC4, C2xD4, C2xQ8, C4oD4, C3:C8, C24, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xC6, C22xC8, C22xC8, C2xM4(2), C8oD4, C2xC4oD4, S3xC8, C8:S3, C2xC3:C8, C4.Dic3, C2xC24, C2xC24, C2xDic6, S3xC2xC4, C2xD12, C4oD12, C2xC3:D4, C22xC12, C2xC8oD4, S3xC2xC8, C2xC8:S3, C8oD12, C2xC4.Dic3, C22xC24, C2xC4oD12, C2xC8oD12
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D6, C22xC4, C24, C4xS3, C22xS3, C8oD4, C23xC4, S3xC2xC4, S3xC23, C2xC8oD4, C8oD12, S3xC22xC4, C2xC8oD12

Smallest permutation representation of C2xC8oD12
On 96 points
Generators in S96
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 25)(10 26)(11 27)(12 28)(13 49)(14 50)(15 51)(16 52)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(37 83)(38 84)(39 73)(40 74)(41 75)(42 76)(43 77)(44 78)(45 79)(46 80)(47 81)(48 82)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 85)(68 86)(69 87)(70 88)(71 89)(72 90)
(1 56 66 40 7 50 72 46)(2 57 67 41 8 51 61 47)(3 58 68 42 9 52 62 48)(4 59 69 43 10 53 63 37)(5 60 70 44 11 54 64 38)(6 49 71 45 12 55 65 39)(13 89 79 28 19 95 73 34)(14 90 80 29 20 96 74 35)(15 91 81 30 21 85 75 36)(16 92 82 31 22 86 76 25)(17 93 83 32 23 87 77 26)(18 94 84 33 24 88 78 27)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 34)(2 33)(3 32)(4 31)(5 30)(6 29)(7 28)(8 27)(9 26)(10 25)(11 36)(12 35)(13 56)(14 55)(15 54)(16 53)(17 52)(18 51)(19 50)(20 49)(21 60)(22 59)(23 58)(24 57)(37 82)(38 81)(39 80)(40 79)(41 78)(42 77)(43 76)(44 75)(45 74)(46 73)(47 84)(48 83)(61 94)(62 93)(63 92)(64 91)(65 90)(66 89)(67 88)(68 87)(69 86)(70 85)(71 96)(72 95)

G:=sub<Sym(96)| (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(37,83)(38,84)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,81)(48,82)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90), (1,56,66,40,7,50,72,46)(2,57,67,41,8,51,61,47)(3,58,68,42,9,52,62,48)(4,59,69,43,10,53,63,37)(5,60,70,44,11,54,64,38)(6,49,71,45,12,55,65,39)(13,89,79,28,19,95,73,34)(14,90,80,29,20,96,74,35)(15,91,81,30,21,85,75,36)(16,92,82,31,22,86,76,25)(17,93,83,32,23,87,77,26)(18,94,84,33,24,88,78,27), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,36)(12,35)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)(21,60)(22,59)(23,58)(24,57)(37,82)(38,81)(39,80)(40,79)(41,78)(42,77)(43,76)(44,75)(45,74)(46,73)(47,84)(48,83)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,96)(72,95)>;

G:=Group( (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(37,83)(38,84)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,81)(48,82)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90), (1,56,66,40,7,50,72,46)(2,57,67,41,8,51,61,47)(3,58,68,42,9,52,62,48)(4,59,69,43,10,53,63,37)(5,60,70,44,11,54,64,38)(6,49,71,45,12,55,65,39)(13,89,79,28,19,95,73,34)(14,90,80,29,20,96,74,35)(15,91,81,30,21,85,75,36)(16,92,82,31,22,86,76,25)(17,93,83,32,23,87,77,26)(18,94,84,33,24,88,78,27), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,36)(12,35)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,50)(20,49)(21,60)(22,59)(23,58)(24,57)(37,82)(38,81)(39,80)(40,79)(41,78)(42,77)(43,76)(44,75)(45,74)(46,73)(47,84)(48,83)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,96)(72,95) );

G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,25),(10,26),(11,27),(12,28),(13,49),(14,50),(15,51),(16,52),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(37,83),(38,84),(39,73),(40,74),(41,75),(42,76),(43,77),(44,78),(45,79),(46,80),(47,81),(48,82),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,85),(68,86),(69,87),(70,88),(71,89),(72,90)], [(1,56,66,40,7,50,72,46),(2,57,67,41,8,51,61,47),(3,58,68,42,9,52,62,48),(4,59,69,43,10,53,63,37),(5,60,70,44,11,54,64,38),(6,49,71,45,12,55,65,39),(13,89,79,28,19,95,73,34),(14,90,80,29,20,96,74,35),(15,91,81,30,21,85,75,36),(16,92,82,31,22,86,76,25),(17,93,83,32,23,87,77,26),(18,94,84,33,24,88,78,27)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,34),(2,33),(3,32),(4,31),(5,30),(6,29),(7,28),(8,27),(9,26),(10,25),(11,36),(12,35),(13,56),(14,55),(15,54),(16,53),(17,52),(18,51),(19,50),(20,49),(21,60),(22,59),(23,58),(24,57),(37,82),(38,81),(39,80),(40,79),(41,78),(42,77),(43,76),(44,75),(45,74),(46,73),(47,84),(48,83),(61,94),(62,93),(63,92),(64,91),(65,90),(66,89),(67,88),(68,87),(69,86),(70,85),(71,96),(72,95)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J6A···6G8A···8H8I8J8K8L8M···8T12A···12H24A···24P
order1222222222344444444446···68···888888···812···1224···24
size1111226666211112266662···21···122226···62···22···2

72 irreducible representations

dim111111111112222222
type++++++++++
imageC1C2C2C2C2C2C2C4C4C4C4S3D6D6C4xS3C4xS3C8oD4C8oD12
kernelC2xC8oD12S3xC2xC8C2xC8:S3C8oD12C2xC4.Dic3C22xC24C2xC4oD12C2xDic6C2xD12C4oD12C2xC3:D4C22xC8C2xC8C22xC4C2xC4C23C6C2
# reps1228111228416162816

Matrix representation of C2xC8oD12 in GL5(F73)

720000
01000
00100
00010
00001
,
270000
01000
00100
000510
000051
,
720000
007200
01100
000628
000311
,
720000
007200
072000
0001165
0001562

G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[27,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,51,0,0,0,0,0,51],[72,0,0,0,0,0,0,1,0,0,0,72,1,0,0,0,0,0,62,3,0,0,0,8,11],[72,0,0,0,0,0,0,72,0,0,0,72,0,0,0,0,0,0,11,15,0,0,0,65,62] >;

C2xC8oD12 in GAP, Magma, Sage, TeX

C_2\times C_8\circ D_{12}
% in TeX

G:=Group("C2xC8oD12");
// GroupNames label

G:=SmallGroup(192,1297);
// by ID

G=gap.SmallGroup(192,1297);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,80,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=d^2=1,c^6=b^4,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^4*c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<