Extensions 1→N→G→Q→1 with N=Q8 and Q=C3:D4

Direct product G=NxQ with N=Q8 and Q=C3:D4
dρLabelID
Q8xC3:D496Q8xC3:D4192,1374

Semidirect products G=N:Q with N=Q8 and Q=C3:D4
extensionφ:Q→Out NdρLabelID
Q8:(C3:D4) = C23.16S4φ: C3:D4/C22S3 ⊆ Out Q832Q8:(C3:D4)192,980
Q8:2(C3:D4) = Dic3:5SD16φ: C3:D4/Dic3C2 ⊆ Out Q896Q8:2(C3:D4)192,722
Q8:3(C3:D4) = D6:8SD16φ: C3:D4/D6C2 ⊆ Out Q896Q8:3(C3:D4)192,729
Q8:4(C3:D4) = D12:7D4φ: C3:D4/D6C2 ⊆ Out Q896Q8:4(C3:D4)192,731
Q8:5(C3:D4) = D12:18D4φ: C3:D4/D6C2 ⊆ Out Q8248+Q8:5(C3:D4)192,757
Q8:6(C3:D4) = (C3xQ8):13D4φ: C3:D4/C2xC6C2 ⊆ Out Q896Q8:6(C3:D4)192,786
Q8:7(C3:D4) = (C3xD4):14D4φ: C3:D4/C2xC6C2 ⊆ Out Q896Q8:7(C3:D4)192,797
Q8:8(C3:D4) = 2+ 1+4:6S3φ: C3:D4/C2xC6C2 ⊆ Out Q8248+Q8:8(C3:D4)192,800
Q8:9(C3:D4) = C6.452- 1+4φ: trivial image96Q8:9(C3:D4)192,1376
Q8:10(C3:D4) = C6.1072- 1+4φ: trivial image96Q8:10(C3:D4)192,1390
Q8:11(C3:D4) = C6.1482+ 1+4φ: trivial image96Q8:11(C3:D4)192,1393

Non-split extensions G=N.Q with N=Q8 and Q=C3:D4
extensionφ:Q→Out NdρLabelID
Q8.1(C3:D4) = C23.14S4φ: C3:D4/C22S3 ⊆ Out Q832Q8.1(C3:D4)192,978
Q8.2(C3:D4) = SL2(F3).D4φ: C3:D4/C22S3 ⊆ Out Q864Q8.2(C3:D4)192,984
Q8.3(C3:D4) = SL2(F3):D4φ: C3:D4/C22S3 ⊆ Out Q832Q8.3(C3:D4)192,986
Q8.4(C3:D4) = Q8.4S4φ: C3:D4/C22S3 ⊆ Out Q8484Q8.4(C3:D4)192,987
Q8.5(C3:D4) = Q8.5S4φ: C3:D4/C22S3 ⊆ Out Q8244+Q8.5(C3:D4)192,988
Q8.6(C3:D4) = D4.S4φ: C3:D4/C22S3 ⊆ Out Q8324-Q8.6(C3:D4)192,989
Q8.7(C3:D4) = D4.3S4φ: C3:D4/C22S3 ⊆ Out Q8324Q8.7(C3:D4)192,990
Q8.8(C3:D4) = (C3xQ8).D4φ: C3:D4/Dic3C2 ⊆ Out Q896Q8.8(C3:D4)192,725
Q8.9(C3:D4) = Dic3:3Q16φ: C3:D4/Dic3C2 ⊆ Out Q8192Q8.9(C3:D4)192,741
Q8.10(C3:D4) = (C2xQ16):S3φ: C3:D4/Dic3C2 ⊆ Out Q896Q8.10(C3:D4)192,744
Q8.11(C3:D4) = M4(2).D6φ: C3:D4/Dic3C2 ⊆ Out Q8488+Q8.11(C3:D4)192,758
Q8.12(C3:D4) = M4(2).13D6φ: C3:D4/Dic3C2 ⊆ Out Q8488-Q8.12(C3:D4)192,759
Q8.13(C3:D4) = M4(2).15D6φ: C3:D4/Dic3C2 ⊆ Out Q8488+Q8.13(C3:D4)192,762
Q8.14(C3:D4) = M4(2).16D6φ: C3:D4/Dic3C2 ⊆ Out Q8968-Q8.14(C3:D4)192,763
Q8.15(C3:D4) = D6:5Q16φ: C3:D4/D6C2 ⊆ Out Q896Q8.15(C3:D4)192,745
Q8.16(C3:D4) = D12.17D4φ: C3:D4/D6C2 ⊆ Out Q896Q8.16(C3:D4)192,746
Q8.17(C3:D4) = D12.38D4φ: C3:D4/D6C2 ⊆ Out Q8488-Q8.17(C3:D4)192,760
Q8.18(C3:D4) = D12.39D4φ: C3:D4/D6C2 ⊆ Out Q8488+Q8.18(C3:D4)192,761
Q8.19(C3:D4) = D12.40D4φ: C3:D4/D6C2 ⊆ Out Q8488-Q8.19(C3:D4)192,764
Q8.20(C3:D4) = (C2xC6):8Q16φ: C3:D4/C2xC6C2 ⊆ Out Q896Q8.20(C3:D4)192,787
Q8.21(C3:D4) = (C3xD4).32D4φ: C3:D4/C2xC6C2 ⊆ Out Q896Q8.21(C3:D4)192,798
Q8.22(C3:D4) = 2+ 1+4.4S3φ: C3:D4/C2xC6C2 ⊆ Out Q8488-Q8.22(C3:D4)192,801
Q8.23(C3:D4) = 2- 1+4:4S3φ: C3:D4/C2xC6C2 ⊆ Out Q8488+Q8.23(C3:D4)192,804
Q8.24(C3:D4) = 2- 1+4.2S3φ: C3:D4/C2xC6C2 ⊆ Out Q8488-Q8.24(C3:D4)192,805
Q8.25(C3:D4) = D12.32C23φ: trivial image488+Q8.25(C3:D4)192,1394
Q8.26(C3:D4) = D12.33C23φ: trivial image488-Q8.26(C3:D4)192,1395
Q8.27(C3:D4) = D12.34C23φ: trivial image488+Q8.27(C3:D4)192,1396
Q8.28(C3:D4) = D12.35C23φ: trivial image968-Q8.28(C3:D4)192,1397

׿
x
:
Z
F
o
wr
Q
<