Copied to
clipboard

G = M4(2).16D6order 192 = 26·3

16th non-split extension by M4(2) of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2).16D6, C3⋊C8.33D4, C8.C22.S3, C4○D4.43D6, (C3×D4).16D4, C4.181(S3×D4), (C2×Q8).94D6, (C3×Q8).16D4, D4.Dic3.C2, C12.200(C2×D4), C35(D4.5D4), D4.7(C3⋊D4), C12.53D48C2, C12.47D47C2, (C2×C12).19C23, Q8.14D6.2C2, Q8.14(C3⋊D4), (C6×Q8).97C22, C12.10D410C2, C6.127(C4⋊D4), C4.Dic3.28C22, C2.33(C23.14D6), C22.16(D42S3), (C2×Dic6).136C22, (C3×M4(2)).13C22, C4.56(C2×C3⋊D4), (C2×C3⋊Q16)⋊22C2, (C2×C6).39(C4○D4), (C2×C3⋊C8).173C22, (C2×C4).19(C22×S3), (C3×C8.C22).1C2, (C3×C4○D4).17C22, SmallGroup(192,763)

Series: Derived Chief Lower central Upper central

C1C2×C12 — M4(2).16D6
C1C3C6C12C2×C12C2×Dic6Q8.14D6 — M4(2).16D6
C3C6C2×C12 — M4(2).16D6
C1C2C2×C4C8.C22

Generators and relations for M4(2).16D6
 G = < a,b,c,d | a8=b2=c6=1, d2=a6, bab=a5, cac-1=a3, dad-1=a3b, cbc-1=dbd-1=a4b, dcd-1=a2c-1 >

Subgroups: 240 in 100 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Dic3, C12, C12, C2×C6, C2×C6, C2×C8, M4(2), M4(2), SD16, Q16, C2×Q8, C2×Q8, C4○D4, C3⋊C8, C3⋊C8, C24, Dic6, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C4.10D4, C8.C4, C8○D4, C2×Q16, C8.C22, C8.C22, C2×C3⋊C8, C2×C3⋊C8, C4.Dic3, C4.Dic3, D4.S3, C3⋊Q16, C3×M4(2), C3×SD16, C3×Q16, C2×Dic6, C6×Q8, C3×C4○D4, D4.5D4, C12.53D4, C12.47D4, C12.10D4, C2×C3⋊Q16, D4.Dic3, Q8.14D6, C3×C8.C22, M4(2).16D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C4⋊D4, S3×D4, D42S3, C2×C3⋊D4, D4.5D4, C23.14D6, M4(2).16D6

Character table of M4(2).16D6

 class 12A2B2C34A4B4C4D4E6A6B6C8A8B8C8D8E8F8G12A12B12C12D12E24A24B
 size 11242224824248668121212244488888
ρ1111111111111111111111111111    trivial
ρ2111-1111-11111-111-1-11-1-11111-1-1-1    linear of order 2
ρ3111-1111-11-111-1-1-1-11-1111111-1-1-1    linear of order 2
ρ4111111111-1111-1-11-1-1-1-11111111    linear of order 2
ρ5111-1111-1-1-111-1111-11-1111-1-1-111    linear of order 2
ρ611111111-1-111111-1111-111-1-11-1-1    linear of order 2
ρ7111-1111-1-1111-1-1-111-11-111-1-1-111    linear of order 2
ρ811111111-11111-1-1-1-1-1-1111-1-11-1-1    linear of order 2
ρ922-222-22-2002-220000000-2200-200    orthogonal lifted from D4
ρ102222-122220-1-1-10020000-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ112222-1222-20-1-1-100-20000-1-111-111    orthogonal lifted from D6
ρ1222-2-22-222002-2-20000000-2200200    orthogonal lifted from D4
ρ1322-2022-20002-20-2-2002002-200000    orthogonal lifted from D4
ρ14222-2-122-220-1-1100-20000-1-1-1-1111    orthogonal lifted from D6
ρ15222-2-122-2-20-1-110020000-1-1111-1-1    orthogonal lifted from D6
ρ1622-2022-20002-202200-2002-200000    orthogonal lifted from D4
ρ1722-2-2-1-22200-11100000001-1--3-3-1-3--3    complex lifted from C3⋊D4
ρ1822-22-1-22-200-11-100000001-1-3--31-3--3    complex lifted from C3⋊D4
ρ1922-22-1-22-200-11-100000001-1--3-31--3-3    complex lifted from C3⋊D4
ρ2022-2-2-1-22200-11100000001-1-3--3-1--3-3    complex lifted from C3⋊D4
ρ2122202-2-20002200002i0-2i0-2-200000    complex lifted from C4○D4
ρ2222202-2-2000220000-2i02i0-2-200000    complex lifted from C4○D4
ρ2344-40-24-4000-2200000000-2200000    orthogonal lifted from S3×D4
ρ244440-2-4-4000-2-2000000002200000    symplectic lifted from D42S3, Schur index 2
ρ254-400400000-40022-22000000000000    symplectic lifted from D4.5D4, Schur index 2
ρ264-400400000-400-2222000000000000    symplectic lifted from D4.5D4, Schur index 2
ρ278-800-40000040000000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of M4(2).16D6
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 22)(2 19)(3 24)(4 21)(5 18)(6 23)(7 20)(8 17)(9 92)(10 89)(11 94)(12 91)(13 96)(14 93)(15 90)(16 95)(25 50)(26 55)(27 52)(28 49)(29 54)(30 51)(31 56)(32 53)(33 65)(34 70)(35 67)(36 72)(37 69)(38 66)(39 71)(40 68)(41 62)(42 59)(43 64)(44 61)(45 58)(46 63)(47 60)(48 57)(73 86)(74 83)(75 88)(76 85)(77 82)(78 87)(79 84)(80 81)
(1 29 86)(2 32 87 4 30 81)(3 27 88 7 31 84)(5 25 82)(6 28 83 8 26 85)(9 66 60 15 68 58)(10 69 61)(11 72 62 13 70 64)(12 67 63 16 71 59)(14 65 57)(17 51 76 19 49 78)(18 54 77 22 50 73)(20 52 79)(21 55 80 23 53 74)(24 56 75)(33 44 93 37 48 89)(34 47 94 40 41 92)(35 42 95)(36 45 96 38 43 90)(39 46 91)
(1 13 7 11 5 9 3 15)(2 95 8 93 6 91 4 89)(10 23 16 21 14 19 12 17)(18 96 24 94 22 92 20 90)(25 60 31 58 29 64 27 62)(26 46 32 44 30 42 28 48)(33 83 39 81 37 87 35 85)(34 73 40 79 38 77 36 75)(41 54 47 52 45 50 43 56)(49 61 55 59 53 57 51 63)(65 78 71 76 69 74 67 80)(66 86 72 84 70 82 68 88)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,92)(10,89)(11,94)(12,91)(13,96)(14,93)(15,90)(16,95)(25,50)(26,55)(27,52)(28,49)(29,54)(30,51)(31,56)(32,53)(33,65)(34,70)(35,67)(36,72)(37,69)(38,66)(39,71)(40,68)(41,62)(42,59)(43,64)(44,61)(45,58)(46,63)(47,60)(48,57)(73,86)(74,83)(75,88)(76,85)(77,82)(78,87)(79,84)(80,81), (1,29,86)(2,32,87,4,30,81)(3,27,88,7,31,84)(5,25,82)(6,28,83,8,26,85)(9,66,60,15,68,58)(10,69,61)(11,72,62,13,70,64)(12,67,63,16,71,59)(14,65,57)(17,51,76,19,49,78)(18,54,77,22,50,73)(20,52,79)(21,55,80,23,53,74)(24,56,75)(33,44,93,37,48,89)(34,47,94,40,41,92)(35,42,95)(36,45,96,38,43,90)(39,46,91), (1,13,7,11,5,9,3,15)(2,95,8,93,6,91,4,89)(10,23,16,21,14,19,12,17)(18,96,24,94,22,92,20,90)(25,60,31,58,29,64,27,62)(26,46,32,44,30,42,28,48)(33,83,39,81,37,87,35,85)(34,73,40,79,38,77,36,75)(41,54,47,52,45,50,43,56)(49,61,55,59,53,57,51,63)(65,78,71,76,69,74,67,80)(66,86,72,84,70,82,68,88)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,92)(10,89)(11,94)(12,91)(13,96)(14,93)(15,90)(16,95)(25,50)(26,55)(27,52)(28,49)(29,54)(30,51)(31,56)(32,53)(33,65)(34,70)(35,67)(36,72)(37,69)(38,66)(39,71)(40,68)(41,62)(42,59)(43,64)(44,61)(45,58)(46,63)(47,60)(48,57)(73,86)(74,83)(75,88)(76,85)(77,82)(78,87)(79,84)(80,81), (1,29,86)(2,32,87,4,30,81)(3,27,88,7,31,84)(5,25,82)(6,28,83,8,26,85)(9,66,60,15,68,58)(10,69,61)(11,72,62,13,70,64)(12,67,63,16,71,59)(14,65,57)(17,51,76,19,49,78)(18,54,77,22,50,73)(20,52,79)(21,55,80,23,53,74)(24,56,75)(33,44,93,37,48,89)(34,47,94,40,41,92)(35,42,95)(36,45,96,38,43,90)(39,46,91), (1,13,7,11,5,9,3,15)(2,95,8,93,6,91,4,89)(10,23,16,21,14,19,12,17)(18,96,24,94,22,92,20,90)(25,60,31,58,29,64,27,62)(26,46,32,44,30,42,28,48)(33,83,39,81,37,87,35,85)(34,73,40,79,38,77,36,75)(41,54,47,52,45,50,43,56)(49,61,55,59,53,57,51,63)(65,78,71,76,69,74,67,80)(66,86,72,84,70,82,68,88) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,22),(2,19),(3,24),(4,21),(5,18),(6,23),(7,20),(8,17),(9,92),(10,89),(11,94),(12,91),(13,96),(14,93),(15,90),(16,95),(25,50),(26,55),(27,52),(28,49),(29,54),(30,51),(31,56),(32,53),(33,65),(34,70),(35,67),(36,72),(37,69),(38,66),(39,71),(40,68),(41,62),(42,59),(43,64),(44,61),(45,58),(46,63),(47,60),(48,57),(73,86),(74,83),(75,88),(76,85),(77,82),(78,87),(79,84),(80,81)], [(1,29,86),(2,32,87,4,30,81),(3,27,88,7,31,84),(5,25,82),(6,28,83,8,26,85),(9,66,60,15,68,58),(10,69,61),(11,72,62,13,70,64),(12,67,63,16,71,59),(14,65,57),(17,51,76,19,49,78),(18,54,77,22,50,73),(20,52,79),(21,55,80,23,53,74),(24,56,75),(33,44,93,37,48,89),(34,47,94,40,41,92),(35,42,95),(36,45,96,38,43,90),(39,46,91)], [(1,13,7,11,5,9,3,15),(2,95,8,93,6,91,4,89),(10,23,16,21,14,19,12,17),(18,96,24,94,22,92,20,90),(25,60,31,58,29,64,27,62),(26,46,32,44,30,42,28,48),(33,83,39,81,37,87,35,85),(34,73,40,79,38,77,36,75),(41,54,47,52,45,50,43,56),(49,61,55,59,53,57,51,63),(65,78,71,76,69,74,67,80),(66,86,72,84,70,82,68,88)]])

Matrix representation of M4(2).16D6 in GL8(𝔽73)

001720000
11210000
48487200000
49487200000
000000270
000000046
000002700
000027000
,
10000000
01000000
00100000
00010000
000002700
000046000
000000027
000000460
,
072000000
172000000
4950110000
48497200000
00001000
000007200
00000001
00000010
,
464619460000
0046270000
002700000
0272700000
000000022
000000220
000063000
000001000

G:=sub<GL(8,GF(73))| [0,1,48,49,0,0,0,0,0,1,48,48,0,0,0,0,1,2,72,72,0,0,0,0,72,1,0,0,0,0,0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0,0,0,0,0,27,0,0,0,0,0,0,0,0,46,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,46,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,0,0,46,0,0,0,0,0,0,27,0],[0,1,49,48,0,0,0,0,72,72,50,49,0,0,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[46,0,0,0,0,0,0,0,46,0,0,27,0,0,0,0,19,46,27,27,0,0,0,0,46,27,0,0,0,0,0,0,0,0,0,0,0,0,63,0,0,0,0,0,0,0,0,10,0,0,0,0,0,22,0,0,0,0,0,0,22,0,0,0] >;

M4(2).16D6 in GAP, Magma, Sage, TeX

M_4(2)._{16}D_6
% in TeX

G:=Group("M4(2).16D6");
// GroupNames label

G:=SmallGroup(192,763);
// by ID

G=gap.SmallGroup(192,763);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,253,254,219,184,1123,297,136,1684,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^6=1,d^2=a^6,b*a*b=a^5,c*a*c^-1=a^3,d*a*d^-1=a^3*b,c*b*c^-1=d*b*d^-1=a^4*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

Export

Character table of M4(2).16D6 in TeX

׿
×
𝔽