Copied to
clipboard

G = D12.17D4order 192 = 26·3

17th non-split extension by D12 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.17D4, D6:C8:19C2, (C2xQ16):4S3, (C2xC8).39D6, C4.68(S3xD4), D6:3Q8:7C2, (C6xQ16):14C2, C12.53(C2xD4), (C2xQ8).87D6, (C3xQ8).10D4, C6.62C22wrC2, C6.80(C4oD8), C2.D24:18C2, C3:6(D4.7D4), Q8:2Dic3:34C2, Q8.16(C3:D4), (C22xS3).40D4, C22.278(S3xD4), (C6xQ8).90C22, C2.30(C23:2D6), (C2xC24).181C22, (C2xC12).461C23, (C2xDic3).188D4, C2.29(Q16:S3), C6.79(C8.C22), C2.17(D24:C2), (C2xD12).125C22, C4:Dic3.184C22, C4.49(C2xC3:D4), (C2xC6).372(C2xD4), (S3xC2xC4).53C22, (C2xQ8:2S3):20C2, (C2xC3:C8).166C22, (C2xQ8:3S3).5C2, (C2xC4).549(C22xS3), SmallGroup(192,746)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D12.17D4
C1C3C6C12C2xC12S3xC2xC4D6:3Q8 — D12.17D4
C3C6C2xC12 — D12.17D4
C1C22C2xC4C2xQ16

Generators and relations for D12.17D4
 G = < a,b,c,d | a12=b2=c4=1, d2=a6, bab=cac-1=a-1, dad-1=a7, cbc-1=a7b, dbd-1=a9b, dcd-1=a6c-1 >

Subgroups: 472 in 152 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, D4, Q8, Q8, C23, Dic3, C12, C12, D6, C2xC6, C22:C4, C4:C4, C2xC8, C2xC8, SD16, Q16, C22xC4, C2xD4, C2xQ8, C4oD4, C3:C8, C24, C4xS3, D12, D12, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C3xQ8, C22xS3, C22xS3, C22:C8, D4:C4, Q8:C4, C22:Q8, C2xSD16, C2xQ16, C2xC4oD4, C2xC3:C8, Dic3:C4, C4:Dic3, D6:C4, Q8:2S3, C2xC24, C3xQ16, S3xC2xC4, S3xC2xC4, C2xD12, C2xD12, Q8:3S3, C6xQ8, D4.7D4, D6:C8, C2.D24, Q8:2Dic3, C2xQ8:2S3, D6:3Q8, C6xQ16, C2xQ8:3S3, D12.17D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C22wrC2, C4oD8, C8.C22, S3xD4, C2xC3:D4, D4.7D4, Q16:S3, D24:C2, C23:2D6, D12.17D4

Smallest permutation representation of D12.17D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 22)(14 21)(15 20)(16 19)(17 18)(23 24)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(37 45)(38 44)(39 43)(40 42)(46 48)(49 51)(52 60)(53 59)(54 58)(55 57)(61 71)(62 70)(63 69)(64 68)(65 67)(73 78)(74 77)(75 76)(79 84)(80 83)(81 82)(86 96)(87 95)(88 94)(89 93)(90 92)
(1 62 31 37)(2 61 32 48)(3 72 33 47)(4 71 34 46)(5 70 35 45)(6 69 36 44)(7 68 25 43)(8 67 26 42)(9 66 27 41)(10 65 28 40)(11 64 29 39)(12 63 30 38)(13 86 83 57)(14 85 84 56)(15 96 73 55)(16 95 74 54)(17 94 75 53)(18 93 76 52)(19 92 77 51)(20 91 78 50)(21 90 79 49)(22 89 80 60)(23 88 81 59)(24 87 82 58)
(1 55 7 49)(2 50 8 56)(3 57 9 51)(4 52 10 58)(5 59 11 53)(6 54 12 60)(13 47 19 41)(14 42 20 48)(15 37 21 43)(16 44 22 38)(17 39 23 45)(18 46 24 40)(25 90 31 96)(26 85 32 91)(27 92 33 86)(28 87 34 93)(29 94 35 88)(30 89 36 95)(61 84 67 78)(62 79 68 73)(63 74 69 80)(64 81 70 75)(65 76 71 82)(66 83 72 77)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,22)(14,21)(15,20)(16,19)(17,18)(23,24)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,45)(38,44)(39,43)(40,42)(46,48)(49,51)(52,60)(53,59)(54,58)(55,57)(61,71)(62,70)(63,69)(64,68)(65,67)(73,78)(74,77)(75,76)(79,84)(80,83)(81,82)(86,96)(87,95)(88,94)(89,93)(90,92), (1,62,31,37)(2,61,32,48)(3,72,33,47)(4,71,34,46)(5,70,35,45)(6,69,36,44)(7,68,25,43)(8,67,26,42)(9,66,27,41)(10,65,28,40)(11,64,29,39)(12,63,30,38)(13,86,83,57)(14,85,84,56)(15,96,73,55)(16,95,74,54)(17,94,75,53)(18,93,76,52)(19,92,77,51)(20,91,78,50)(21,90,79,49)(22,89,80,60)(23,88,81,59)(24,87,82,58), (1,55,7,49)(2,50,8,56)(3,57,9,51)(4,52,10,58)(5,59,11,53)(6,54,12,60)(13,47,19,41)(14,42,20,48)(15,37,21,43)(16,44,22,38)(17,39,23,45)(18,46,24,40)(25,90,31,96)(26,85,32,91)(27,92,33,86)(28,87,34,93)(29,94,35,88)(30,89,36,95)(61,84,67,78)(62,79,68,73)(63,74,69,80)(64,81,70,75)(65,76,71,82)(66,83,72,77)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,22)(14,21)(15,20)(16,19)(17,18)(23,24)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,45)(38,44)(39,43)(40,42)(46,48)(49,51)(52,60)(53,59)(54,58)(55,57)(61,71)(62,70)(63,69)(64,68)(65,67)(73,78)(74,77)(75,76)(79,84)(80,83)(81,82)(86,96)(87,95)(88,94)(89,93)(90,92), (1,62,31,37)(2,61,32,48)(3,72,33,47)(4,71,34,46)(5,70,35,45)(6,69,36,44)(7,68,25,43)(8,67,26,42)(9,66,27,41)(10,65,28,40)(11,64,29,39)(12,63,30,38)(13,86,83,57)(14,85,84,56)(15,96,73,55)(16,95,74,54)(17,94,75,53)(18,93,76,52)(19,92,77,51)(20,91,78,50)(21,90,79,49)(22,89,80,60)(23,88,81,59)(24,87,82,58), (1,55,7,49)(2,50,8,56)(3,57,9,51)(4,52,10,58)(5,59,11,53)(6,54,12,60)(13,47,19,41)(14,42,20,48)(15,37,21,43)(16,44,22,38)(17,39,23,45)(18,46,24,40)(25,90,31,96)(26,85,32,91)(27,92,33,86)(28,87,34,93)(29,94,35,88)(30,89,36,95)(61,84,67,78)(62,79,68,73)(63,74,69,80)(64,81,70,75)(65,76,71,82)(66,83,72,77) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,22),(14,21),(15,20),(16,19),(17,18),(23,24),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(37,45),(38,44),(39,43),(40,42),(46,48),(49,51),(52,60),(53,59),(54,58),(55,57),(61,71),(62,70),(63,69),(64,68),(65,67),(73,78),(74,77),(75,76),(79,84),(80,83),(81,82),(86,96),(87,95),(88,94),(89,93),(90,92)], [(1,62,31,37),(2,61,32,48),(3,72,33,47),(4,71,34,46),(5,70,35,45),(6,69,36,44),(7,68,25,43),(8,67,26,42),(9,66,27,41),(10,65,28,40),(11,64,29,39),(12,63,30,38),(13,86,83,57),(14,85,84,56),(15,96,73,55),(16,95,74,54),(17,94,75,53),(18,93,76,52),(19,92,77,51),(20,91,78,50),(21,90,79,49),(22,89,80,60),(23,88,81,59),(24,87,82,58)], [(1,55,7,49),(2,50,8,56),(3,57,9,51),(4,52,10,58),(5,59,11,53),(6,54,12,60),(13,47,19,41),(14,42,20,48),(15,37,21,43),(16,44,22,38),(17,39,23,45),(18,46,24,40),(25,90,31,96),(26,85,32,91),(27,92,33,86),(28,87,34,93),(29,94,35,88),(30,89,36,95),(61,84,67,78),(62,79,68,73),(63,74,69,80),(64,81,70,75),(65,76,71,82),(66,83,72,77)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222222344444444666888812121212121224242424
size111112121222244668242224412124488884444

33 irreducible representations

dim1111111122222222244444
type+++++++++++++++-+++
imageC1C2C2C2C2C2C2C2S3D4D4D4D4D6D6C3:D4C4oD8C8.C22S3xD4S3xD4Q16:S3D24:C2
kernelD12.17D4D6:C8C2.D24Q8:2Dic3C2xQ8:2S3D6:3Q8C6xQ16C2xQ8:3S3C2xQ16D12C2xDic3C3xQ8C22xS3C2xC8C2xQ8Q8C6C6C4C22C2C2
# reps1111111112121124411122

Matrix representation of D12.17D4 in GL6(F73)

72720000
100000
001000
000100
0000072
000010
,
72720000
010000
001000
000100
0000072
0000720
,
100000
72720000
00255200
0024800
00001657
00005757
,
100000
010000
00482000
00712500
000066
0000667

G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,0],[72,0,0,0,0,0,72,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,72,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,25,2,0,0,0,0,52,48,0,0,0,0,0,0,16,57,0,0,0,0,57,57],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,48,71,0,0,0,0,20,25,0,0,0,0,0,0,6,6,0,0,0,0,6,67] >;

D12.17D4 in GAP, Magma, Sage, TeX

D_{12}._{17}D_4
% in TeX

G:=Group("D12.17D4");
// GroupNames label

G:=SmallGroup(192,746);
// by ID

G=gap.SmallGroup(192,746);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,232,758,135,184,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=1,d^2=a^6,b*a*b=c*a*c^-1=a^-1,d*a*d^-1=a^7,c*b*c^-1=a^7*b,d*b*d^-1=a^9*b,d*c*d^-1=a^6*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<