Copied to
clipboard

G = D68SD16order 192 = 26·3

2nd semidirect product of D6 and SD16 acting via SD16/Q8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D68SD16, Dic67D4, (C3×Q8)⋊5D4, D6⋊C833C2, C4.63(S3×D4), (C2×D4).72D6, Q83(C3⋊D4), C34(Q8⋊D4), (C2×C8).147D6, C12.48(C2×D4), C6.58C22≀C2, (C6×SD16)⋊21C2, (C2×SD16)⋊11S3, D63D4.7C2, (C2×Q8).140D6, C2.29(S3×SD16), C6.46(C2×SD16), Q82Dic328C2, C2.Dic1235C2, (C2×Dic3).72D4, (C6×D4).96C22, (C22×S3).92D4, C22.267(S3×D4), (C6×Q8).76C22, C2.26(C232D6), (C2×C12).447C23, (C2×C24).294C22, C2.29(D4.D6), C6.49(C8.C22), C4⋊Dic3.174C22, (C2×Dic6).127C22, (C2×S3×Q8)⋊2C2, C4.43(C2×C3⋊D4), (C2×D4.S3)⋊20C2, (C2×C6).359(C2×D4), (S3×C2×C4).48C22, (C2×C3⋊C8).157C22, (C2×C4).536(C22×S3), SmallGroup(192,729)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D68SD16
C1C3C6C2×C6C2×C12S3×C2×C4C2×S3×Q8 — D68SD16
C3C6C2×C12 — D68SD16
C1C22C2×C4C2×SD16

Generators and relations for D68SD16
 G = < a,b,c,d | a6=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=dbd=a3b, dcd=c3 >

Subgroups: 472 in 158 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C3⋊C8, C24, Dic6, Dic6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C3×Q8, C22×S3, C22×C6, C22⋊C8, Q8⋊C4, C4⋊D4, C2×SD16, C2×SD16, C22×Q8, C2×C3⋊C8, C4⋊Dic3, D4.S3, C6.D4, C2×C24, C3×SD16, C2×Dic6, C2×Dic6, S3×C2×C4, S3×C2×C4, S3×Q8, C2×C3⋊D4, C6×D4, C6×Q8, Q8⋊D4, C2.Dic12, D6⋊C8, Q82Dic3, C2×D4.S3, D63D4, C6×SD16, C2×S3×Q8, D68SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C3⋊D4, C22×S3, C22≀C2, C2×SD16, C8.C22, S3×D4, C2×C3⋊D4, Q8⋊D4, S3×SD16, D4.D6, C232D6, D68SD16

Smallest permutation representation of D68SD16
On 96 points
Generators in S96
(1 42 19 77 70 54)(2 43 20 78 71 55)(3 44 21 79 72 56)(4 45 22 80 65 49)(5 46 23 73 66 50)(6 47 24 74 67 51)(7 48 17 75 68 52)(8 41 18 76 69 53)(9 96 83 63 28 35)(10 89 84 64 29 36)(11 90 85 57 30 37)(12 91 86 58 31 38)(13 92 87 59 32 39)(14 93 88 60 25 40)(15 94 81 61 26 33)(16 95 82 62 27 34)
(1 37)(2 86)(3 39)(4 88)(5 33)(6 82)(7 35)(8 84)(9 52)(10 18)(11 54)(12 20)(13 56)(14 22)(15 50)(16 24)(17 63)(19 57)(21 59)(23 61)(25 65)(26 46)(27 67)(28 48)(29 69)(30 42)(31 71)(32 44)(34 74)(36 76)(38 78)(40 80)(41 89)(43 91)(45 93)(47 95)(49 60)(51 62)(53 64)(55 58)(66 94)(68 96)(70 90)(72 92)(73 81)(75 83)(77 85)(79 87)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(2 4)(3 7)(6 8)(9 59)(10 62)(11 57)(12 60)(13 63)(14 58)(15 61)(16 64)(17 21)(18 24)(20 22)(25 91)(26 94)(27 89)(28 92)(29 95)(30 90)(31 93)(32 96)(33 81)(34 84)(35 87)(36 82)(37 85)(38 88)(39 83)(40 86)(41 47)(43 45)(44 48)(49 55)(51 53)(52 56)(65 71)(67 69)(68 72)(74 76)(75 79)(78 80)

G:=sub<Sym(96)| (1,42,19,77,70,54)(2,43,20,78,71,55)(3,44,21,79,72,56)(4,45,22,80,65,49)(5,46,23,73,66,50)(6,47,24,74,67,51)(7,48,17,75,68,52)(8,41,18,76,69,53)(9,96,83,63,28,35)(10,89,84,64,29,36)(11,90,85,57,30,37)(12,91,86,58,31,38)(13,92,87,59,32,39)(14,93,88,60,25,40)(15,94,81,61,26,33)(16,95,82,62,27,34), (1,37)(2,86)(3,39)(4,88)(5,33)(6,82)(7,35)(8,84)(9,52)(10,18)(11,54)(12,20)(13,56)(14,22)(15,50)(16,24)(17,63)(19,57)(21,59)(23,61)(25,65)(26,46)(27,67)(28,48)(29,69)(30,42)(31,71)(32,44)(34,74)(36,76)(38,78)(40,80)(41,89)(43,91)(45,93)(47,95)(49,60)(51,62)(53,64)(55,58)(66,94)(68,96)(70,90)(72,92)(73,81)(75,83)(77,85)(79,87), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,4)(3,7)(6,8)(9,59)(10,62)(11,57)(12,60)(13,63)(14,58)(15,61)(16,64)(17,21)(18,24)(20,22)(25,91)(26,94)(27,89)(28,92)(29,95)(30,90)(31,93)(32,96)(33,81)(34,84)(35,87)(36,82)(37,85)(38,88)(39,83)(40,86)(41,47)(43,45)(44,48)(49,55)(51,53)(52,56)(65,71)(67,69)(68,72)(74,76)(75,79)(78,80)>;

G:=Group( (1,42,19,77,70,54)(2,43,20,78,71,55)(3,44,21,79,72,56)(4,45,22,80,65,49)(5,46,23,73,66,50)(6,47,24,74,67,51)(7,48,17,75,68,52)(8,41,18,76,69,53)(9,96,83,63,28,35)(10,89,84,64,29,36)(11,90,85,57,30,37)(12,91,86,58,31,38)(13,92,87,59,32,39)(14,93,88,60,25,40)(15,94,81,61,26,33)(16,95,82,62,27,34), (1,37)(2,86)(3,39)(4,88)(5,33)(6,82)(7,35)(8,84)(9,52)(10,18)(11,54)(12,20)(13,56)(14,22)(15,50)(16,24)(17,63)(19,57)(21,59)(23,61)(25,65)(26,46)(27,67)(28,48)(29,69)(30,42)(31,71)(32,44)(34,74)(36,76)(38,78)(40,80)(41,89)(43,91)(45,93)(47,95)(49,60)(51,62)(53,64)(55,58)(66,94)(68,96)(70,90)(72,92)(73,81)(75,83)(77,85)(79,87), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (2,4)(3,7)(6,8)(9,59)(10,62)(11,57)(12,60)(13,63)(14,58)(15,61)(16,64)(17,21)(18,24)(20,22)(25,91)(26,94)(27,89)(28,92)(29,95)(30,90)(31,93)(32,96)(33,81)(34,84)(35,87)(36,82)(37,85)(38,88)(39,83)(40,86)(41,47)(43,45)(44,48)(49,55)(51,53)(52,56)(65,71)(67,69)(68,72)(74,76)(75,79)(78,80) );

G=PermutationGroup([[(1,42,19,77,70,54),(2,43,20,78,71,55),(3,44,21,79,72,56),(4,45,22,80,65,49),(5,46,23,73,66,50),(6,47,24,74,67,51),(7,48,17,75,68,52),(8,41,18,76,69,53),(9,96,83,63,28,35),(10,89,84,64,29,36),(11,90,85,57,30,37),(12,91,86,58,31,38),(13,92,87,59,32,39),(14,93,88,60,25,40),(15,94,81,61,26,33),(16,95,82,62,27,34)], [(1,37),(2,86),(3,39),(4,88),(5,33),(6,82),(7,35),(8,84),(9,52),(10,18),(11,54),(12,20),(13,56),(14,22),(15,50),(16,24),(17,63),(19,57),(21,59),(23,61),(25,65),(26,46),(27,67),(28,48),(29,69),(30,42),(31,71),(32,44),(34,74),(36,76),(38,78),(40,80),(41,89),(43,91),(45,93),(47,95),(49,60),(51,62),(53,64),(55,58),(66,94),(68,96),(70,90),(72,92),(73,81),(75,83),(77,85),(79,87)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(2,4),(3,7),(6,8),(9,59),(10,62),(11,57),(12,60),(13,63),(14,58),(15,61),(16,64),(17,21),(18,24),(20,22),(25,91),(26,94),(27,89),(28,92),(29,95),(30,90),(31,93),(32,96),(33,81),(34,84),(35,87),(36,82),(37,85),(38,88),(39,83),(40,86),(41,47),(43,45),(44,48),(49,55),(51,53),(52,56),(65,71),(67,69),(68,72),(74,76),(75,79),(78,80)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222223444444446666688881212121224242424
size111166822244121212242228844121244884444

33 irreducible representations

dim11111111222222222244444
type++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2S3D4D4D4D4D6D6D6SD16C3⋊D4C8.C22S3×D4S3×D4S3×SD16D4.D6
kernelD68SD16C2.Dic12D6⋊C8Q82Dic3C2×D4.S3D63D4C6×SD16C2×S3×Q8C2×SD16Dic6C2×Dic3C3×Q8C22×S3C2×C8C2×D4C2×Q8D6Q8C6C4C22C2C2
# reps11111111121211114411122

Matrix representation of D68SD16 in GL4(𝔽73) generated by

9000
536500
0010
0001
,
556500
131800
0010
0001
,
72000
41100
00676
006767
,
1000
327200
0010
00072
G:=sub<GL(4,GF(73))| [9,53,0,0,0,65,0,0,0,0,1,0,0,0,0,1],[55,13,0,0,65,18,0,0,0,0,1,0,0,0,0,1],[72,41,0,0,0,1,0,0,0,0,67,67,0,0,6,67],[1,32,0,0,0,72,0,0,0,0,1,0,0,0,0,72] >;

D68SD16 in GAP, Magma, Sage, TeX

D_6\rtimes_8{\rm SD}_{16}
% in TeX

G:=Group("D6:8SD16");
// GroupNames label

G:=SmallGroup(192,729);
// by ID

G=gap.SmallGroup(192,729);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,219,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=a^3*b,d*c*d=c^3>;
// generators/relations

׿
×
𝔽