extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1(C3xQ8) = C3xC4.9C42 | φ: C3xQ8/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).1(C3xQ8) | 192,143 |
(C2xC4).2(C3xQ8) = C3xC22.C42 | φ: C3xQ8/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).2(C3xQ8) | 192,149 |
(C2xC4).3(C3xQ8) = C3xM4(2):4C4 | φ: C3xQ8/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).3(C3xQ8) | 192,150 |
(C2xC4).4(C3xQ8) = C3xC23.81C23 | φ: C3xQ8/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).4(C3xQ8) | 192,831 |
(C2xC4).5(C3xQ8) = C3xC23.83C23 | φ: C3xQ8/C6 → C22 ⊆ Aut C2xC4 | 192 | | (C2xC4).5(C3xQ8) | 192,833 |
(C2xC4).6(C3xQ8) = C3xM4(2):C4 | φ: C3xQ8/C6 → C22 ⊆ Aut C2xC4 | 96 | | (C2xC4).6(C3xQ8) | 192,861 |
(C2xC4).7(C3xQ8) = C3xM4(2).C4 | φ: C3xQ8/C6 → C22 ⊆ Aut C2xC4 | 48 | 4 | (C2xC4).7(C3xQ8) | 192,863 |
(C2xC4).8(C3xQ8) = C3xC8:2C8 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).8(C3xQ8) | 192,140 |
(C2xC4).9(C3xQ8) = C3xC8:1C8 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).9(C3xQ8) | 192,141 |
(C2xC4).10(C3xQ8) = C3xC23.63C23 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).10(C3xQ8) | 192,820 |
(C2xC4).11(C3xQ8) = C3xC23.65C23 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).11(C3xQ8) | 192,822 |
(C2xC4).12(C3xQ8) = C3xC42:6C4 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 48 | | (C2xC4).12(C3xQ8) | 192,145 |
(C2xC4).13(C3xQ8) = C3xC22.4Q16 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).13(C3xQ8) | 192,146 |
(C2xC4).14(C3xQ8) = C3xC42:8C4 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).14(C3xQ8) | 192,815 |
(C2xC4).15(C3xQ8) = C3xC42:9C4 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).15(C3xQ8) | 192,817 |
(C2xC4).16(C3xQ8) = C3xC4:M4(2) | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).16(C3xQ8) | 192,856 |
(C2xC4).17(C3xQ8) = C3xC42.6C22 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).17(C3xQ8) | 192,857 |
(C2xC4).18(C3xQ8) = C6xC4.Q8 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).18(C3xQ8) | 192,858 |
(C2xC4).19(C3xQ8) = C6xC2.D8 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).19(C3xQ8) | 192,859 |
(C2xC4).20(C3xQ8) = C3xC23.25D4 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).20(C3xQ8) | 192,860 |
(C2xC4).21(C3xQ8) = C6xC8.C4 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 96 | | (C2xC4).21(C3xQ8) | 192,862 |
(C2xC4).22(C3xQ8) = C6xC42.C2 | φ: C3xQ8/C12 → C2 ⊆ Aut C2xC4 | 192 | | (C2xC4).22(C3xQ8) | 192,1416 |
(C2xC4).23(C3xQ8) = C3xC22.7C42 | central extension (φ=1) | 192 | | (C2xC4).23(C3xQ8) | 192,142 |
(C2xC4).24(C3xQ8) = C12xC4:C4 | central extension (φ=1) | 192 | | (C2xC4).24(C3xQ8) | 192,811 |
(C2xC4).25(C3xQ8) = C6xC4:C8 | central extension (φ=1) | 192 | | (C2xC4).25(C3xQ8) | 192,855 |