Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C3xQ8

Direct product G=NxQ with N=C2xC4 and Q=C3xQ8
dρLabelID
Q8xC2xC12192Q8xC2xC12192,1405

Semidirect products G=N:Q with N=C2xC4 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C3xQ8) = C3xC23.78C23φ: C3xQ8/C6C22 ⊆ Aut C2xC4192(C2xC4):1(C3xQ8)192,828
(C2xC4):2(C3xQ8) = C3xC23.41C23φ: C3xQ8/C6C22 ⊆ Aut C2xC496(C2xC4):2(C3xQ8)192,1433
(C2xC4):3(C3xQ8) = C3xC23.67C23φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4):3(C3xQ8)192,824
(C2xC4):4(C3xQ8) = C6xC4:Q8φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4):4(C3xQ8)192,1420
(C2xC4):5(C3xQ8) = C3xC23.37C23φ: C3xQ8/C12C2 ⊆ Aut C2xC496(C2xC4):5(C3xQ8)192,1422

Non-split extensions G=N.Q with N=C2xC4 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C3xQ8) = C3xC4.9C42φ: C3xQ8/C6C22 ⊆ Aut C2xC4484(C2xC4).1(C3xQ8)192,143
(C2xC4).2(C3xQ8) = C3xC22.C42φ: C3xQ8/C6C22 ⊆ Aut C2xC496(C2xC4).2(C3xQ8)192,149
(C2xC4).3(C3xQ8) = C3xM4(2):4C4φ: C3xQ8/C6C22 ⊆ Aut C2xC4484(C2xC4).3(C3xQ8)192,150
(C2xC4).4(C3xQ8) = C3xC23.81C23φ: C3xQ8/C6C22 ⊆ Aut C2xC4192(C2xC4).4(C3xQ8)192,831
(C2xC4).5(C3xQ8) = C3xC23.83C23φ: C3xQ8/C6C22 ⊆ Aut C2xC4192(C2xC4).5(C3xQ8)192,833
(C2xC4).6(C3xQ8) = C3xM4(2):C4φ: C3xQ8/C6C22 ⊆ Aut C2xC496(C2xC4).6(C3xQ8)192,861
(C2xC4).7(C3xQ8) = C3xM4(2).C4φ: C3xQ8/C6C22 ⊆ Aut C2xC4484(C2xC4).7(C3xQ8)192,863
(C2xC4).8(C3xQ8) = C3xC8:2C8φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4).8(C3xQ8)192,140
(C2xC4).9(C3xQ8) = C3xC8:1C8φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4).9(C3xQ8)192,141
(C2xC4).10(C3xQ8) = C3xC23.63C23φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4).10(C3xQ8)192,820
(C2xC4).11(C3xQ8) = C3xC23.65C23φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4).11(C3xQ8)192,822
(C2xC4).12(C3xQ8) = C3xC42:6C4φ: C3xQ8/C12C2 ⊆ Aut C2xC448(C2xC4).12(C3xQ8)192,145
(C2xC4).13(C3xQ8) = C3xC22.4Q16φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4).13(C3xQ8)192,146
(C2xC4).14(C3xQ8) = C3xC42:8C4φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4).14(C3xQ8)192,815
(C2xC4).15(C3xQ8) = C3xC42:9C4φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4).15(C3xQ8)192,817
(C2xC4).16(C3xQ8) = C3xC4:M4(2)φ: C3xQ8/C12C2 ⊆ Aut C2xC496(C2xC4).16(C3xQ8)192,856
(C2xC4).17(C3xQ8) = C3xC42.6C22φ: C3xQ8/C12C2 ⊆ Aut C2xC496(C2xC4).17(C3xQ8)192,857
(C2xC4).18(C3xQ8) = C6xC4.Q8φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4).18(C3xQ8)192,858
(C2xC4).19(C3xQ8) = C6xC2.D8φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4).19(C3xQ8)192,859
(C2xC4).20(C3xQ8) = C3xC23.25D4φ: C3xQ8/C12C2 ⊆ Aut C2xC496(C2xC4).20(C3xQ8)192,860
(C2xC4).21(C3xQ8) = C6xC8.C4φ: C3xQ8/C12C2 ⊆ Aut C2xC496(C2xC4).21(C3xQ8)192,862
(C2xC4).22(C3xQ8) = C6xC42.C2φ: C3xQ8/C12C2 ⊆ Aut C2xC4192(C2xC4).22(C3xQ8)192,1416
(C2xC4).23(C3xQ8) = C3xC22.7C42central extension (φ=1)192(C2xC4).23(C3xQ8)192,142
(C2xC4).24(C3xQ8) = C12xC4:C4central extension (φ=1)192(C2xC4).24(C3xQ8)192,811
(C2xC4).25(C3xQ8) = C6xC4:C8central extension (φ=1)192(C2xC4).25(C3xQ8)192,855

׿
x
:
Z
F
o
wr
Q
<