extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C3×Q8) = C3×C4.9C42 | φ: C3×Q8/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).1(C3xQ8) | 192,143 |
(C2×C4).2(C3×Q8) = C3×C22.C42 | φ: C3×Q8/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).2(C3xQ8) | 192,149 |
(C2×C4).3(C3×Q8) = C3×M4(2)⋊4C4 | φ: C3×Q8/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).3(C3xQ8) | 192,150 |
(C2×C4).4(C3×Q8) = C3×C23.81C23 | φ: C3×Q8/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).4(C3xQ8) | 192,831 |
(C2×C4).5(C3×Q8) = C3×C23.83C23 | φ: C3×Q8/C6 → C22 ⊆ Aut C2×C4 | 192 | | (C2xC4).5(C3xQ8) | 192,833 |
(C2×C4).6(C3×Q8) = C3×M4(2)⋊C4 | φ: C3×Q8/C6 → C22 ⊆ Aut C2×C4 | 96 | | (C2xC4).6(C3xQ8) | 192,861 |
(C2×C4).7(C3×Q8) = C3×M4(2).C4 | φ: C3×Q8/C6 → C22 ⊆ Aut C2×C4 | 48 | 4 | (C2xC4).7(C3xQ8) | 192,863 |
(C2×C4).8(C3×Q8) = C3×C8⋊2C8 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).8(C3xQ8) | 192,140 |
(C2×C4).9(C3×Q8) = C3×C8⋊1C8 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).9(C3xQ8) | 192,141 |
(C2×C4).10(C3×Q8) = C3×C23.63C23 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).10(C3xQ8) | 192,820 |
(C2×C4).11(C3×Q8) = C3×C23.65C23 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).11(C3xQ8) | 192,822 |
(C2×C4).12(C3×Q8) = C3×C42⋊6C4 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).12(C3xQ8) | 192,145 |
(C2×C4).13(C3×Q8) = C3×C22.4Q16 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).13(C3xQ8) | 192,146 |
(C2×C4).14(C3×Q8) = C3×C42⋊8C4 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).14(C3xQ8) | 192,815 |
(C2×C4).15(C3×Q8) = C3×C42⋊9C4 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).15(C3xQ8) | 192,817 |
(C2×C4).16(C3×Q8) = C3×C4⋊M4(2) | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).16(C3xQ8) | 192,856 |
(C2×C4).17(C3×Q8) = C3×C42.6C22 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).17(C3xQ8) | 192,857 |
(C2×C4).18(C3×Q8) = C6×C4.Q8 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).18(C3xQ8) | 192,858 |
(C2×C4).19(C3×Q8) = C6×C2.D8 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).19(C3xQ8) | 192,859 |
(C2×C4).20(C3×Q8) = C3×C23.25D4 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).20(C3xQ8) | 192,860 |
(C2×C4).21(C3×Q8) = C6×C8.C4 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 96 | | (C2xC4).21(C3xQ8) | 192,862 |
(C2×C4).22(C3×Q8) = C6×C42.C2 | φ: C3×Q8/C12 → C2 ⊆ Aut C2×C4 | 192 | | (C2xC4).22(C3xQ8) | 192,1416 |
(C2×C4).23(C3×Q8) = C3×C22.7C42 | central extension (φ=1) | 192 | | (C2xC4).23(C3xQ8) | 192,142 |
(C2×C4).24(C3×Q8) = C12×C4⋊C4 | central extension (φ=1) | 192 | | (C2xC4).24(C3xQ8) | 192,811 |
(C2×C4).25(C3×Q8) = C6×C4⋊C8 | central extension (φ=1) | 192 | | (C2xC4).25(C3xQ8) | 192,855 |