Extensions 1→N→G→Q→1 with N=C8 and Q=S4

Direct product G=N×Q with N=C8 and Q=S4

Semidirect products G=N:Q with N=C8 and Q=S4
extensionφ:Q→Aut NdρLabelID
C81S4 = A4⋊D8φ: S4/A4C2 ⊆ Aut C8246+C8:1S4192,961
C82S4 = C82S4φ: S4/A4C2 ⊆ Aut C8246C8:2S4192,960
C83S4 = C8⋊S4φ: S4/A4C2 ⊆ Aut C8246C8:3S4192,959

Non-split extensions G=N.Q with N=C8 and Q=S4
extensionφ:Q→Aut NdρLabelID
C8.1S4 = A4⋊Q16φ: S4/A4C2 ⊆ Aut C8486-C8.1S4192,957
C8.2S4 = C8.S4φ: S4/A4C2 ⊆ Aut C8644-C8.2S4192,962
C8.3S4 = C8.3S4φ: S4/A4C2 ⊆ Aut C8324+C8.3S4192,966
C8.4S4 = C8.4S4φ: S4/A4C2 ⊆ Aut C8324C8.4S4192,965
C8.5S4 = C8.5S4φ: S4/A4C2 ⊆ Aut C8324C8.5S4192,964
C8.6S4 = A4⋊C16central extension (φ=1)483C8.6S4192,186
C8.7S4 = C8.7S4central extension (φ=1)642C8.7S4192,187
C8.8S4 = CU2(𝔽3)central extension (φ=1)322C8.8S4192,963