non-abelian, soluble, monomial
Aliases: C8.1S4, A4⋊1Q16, C22⋊Dic12, C23.8D12, C2.6(C4⋊S4), C4.16(C2×S4), (C8×A4).1C2, (C2×A4).1D4, A4⋊Q8.1C2, (C22×C8).2S3, (C4×A4).8C22, (C22×C4).13D6, SmallGroup(192,957)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for A4⋊Q16
G = < a,b,c,d,e | a2=b2=c3=d8=1, e2=d4, cac-1=eae-1=ab=ba, ad=da, cbc-1=a, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >
Subgroups: 258 in 65 conjugacy classes, 15 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C8, C8, C2×C4, Q8, C23, Dic3, C12, A4, C22⋊C4, C4⋊C4, C2×C8, Q16, C22×C4, C2×Q8, C24, Dic6, C2×A4, Q8⋊C4, C2.D8, C22⋊Q8, C22×C8, C2×Q16, Dic12, A4⋊C4, C4×A4, C8.18D4, C8×A4, A4⋊Q8, A4⋊Q16
Quotients: C1, C2, C22, S3, D4, D6, Q16, D12, S4, Dic12, C2×S4, C4⋊S4, A4⋊Q16
Character table of A4⋊Q16
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6 | 8A | 8B | 8C | 8D | 12A | 12B | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 3 | 3 | 8 | 2 | 6 | 24 | 24 | 24 | 24 | 8 | 2 | 2 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ7 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ9 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ10 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | √2 | -√2 | -√2 | √2 | 0 | 0 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ11 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -√2 | √2 | √2 | -√2 | 0 | 0 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -√2 | √2 | √2 | -√2 | √3 | -√3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | symplectic lifted from Dic12, Schur index 2 |
ρ13 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | √2 | -√2 | -√2 | √2 | √3 | -√3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87+ζ85ζ3 | symplectic lifted from Dic12, Schur index 2 |
ρ14 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -√2 | √2 | √2 | -√2 | -√3 | √3 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83+ζ8ζ32 | symplectic lifted from Dic12, Schur index 2 |
ρ15 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | √2 | -√2 | -√2 | √2 | -√3 | √3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | symplectic lifted from Dic12, Schur index 2 |
ρ16 | 3 | 3 | -1 | -1 | 0 | 3 | -1 | 1 | -1 | -1 | 1 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ17 | 3 | 3 | -1 | -1 | 0 | 3 | -1 | 1 | 1 | -1 | -1 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ18 | 3 | 3 | -1 | -1 | 0 | 3 | -1 | -1 | -1 | 1 | 1 | 0 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S4 |
ρ19 | 3 | 3 | -1 | -1 | 0 | 3 | -1 | -1 | 1 | 1 | -1 | 0 | -3 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S4 |
ρ20 | 6 | 6 | -2 | -2 | 0 | -6 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C4⋊S4 |
ρ21 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3√2 | -3√2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ22 | 6 | -6 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -3√2 | 3√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 41)(8 42)(9 33)(10 34)(11 35)(12 36)(13 37)(14 38)(15 39)(16 40)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 5)(2 6)(3 7)(4 8)(9 37)(10 38)(11 39)(12 40)(13 33)(14 34)(15 35)(16 36)(17 32)(18 25)(19 26)(20 27)(21 28)(22 29)(23 30)(24 31)(41 45)(42 46)(43 47)(44 48)
(1 40 25)(2 33 26)(3 34 27)(4 35 28)(5 36 29)(6 37 30)(7 38 31)(8 39 32)(9 19 48)(10 20 41)(11 21 42)(12 22 43)(13 23 44)(14 24 45)(15 17 46)(16 18 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 47 5 43)(2 46 6 42)(3 45 7 41)(4 44 8 48)(9 28 13 32)(10 27 14 31)(11 26 15 30)(12 25 16 29)(17 37 21 33)(18 36 22 40)(19 35 23 39)(20 34 24 38)
G:=sub<Sym(48)| (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,5)(2,6)(3,7)(4,8)(9,37)(10,38)(11,39)(12,40)(13,33)(14,34)(15,35)(16,36)(17,32)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31)(41,45)(42,46)(43,47)(44,48), (1,40,25)(2,33,26)(3,34,27)(4,35,28)(5,36,29)(6,37,30)(7,38,31)(8,39,32)(9,19,48)(10,20,41)(11,21,42)(12,22,43)(13,23,44)(14,24,45)(15,17,46)(16,18,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,47,5,43)(2,46,6,42)(3,45,7,41)(4,44,8,48)(9,28,13,32)(10,27,14,31)(11,26,15,30)(12,25,16,29)(17,37,21,33)(18,36,22,40)(19,35,23,39)(20,34,24,38)>;
G:=Group( (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,33)(10,34)(11,35)(12,36)(13,37)(14,38)(15,39)(16,40)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,5)(2,6)(3,7)(4,8)(9,37)(10,38)(11,39)(12,40)(13,33)(14,34)(15,35)(16,36)(17,32)(18,25)(19,26)(20,27)(21,28)(22,29)(23,30)(24,31)(41,45)(42,46)(43,47)(44,48), (1,40,25)(2,33,26)(3,34,27)(4,35,28)(5,36,29)(6,37,30)(7,38,31)(8,39,32)(9,19,48)(10,20,41)(11,21,42)(12,22,43)(13,23,44)(14,24,45)(15,17,46)(16,18,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,47,5,43)(2,46,6,42)(3,45,7,41)(4,44,8,48)(9,28,13,32)(10,27,14,31)(11,26,15,30)(12,25,16,29)(17,37,21,33)(18,36,22,40)(19,35,23,39)(20,34,24,38) );
G=PermutationGroup([[(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,41),(8,42),(9,33),(10,34),(11,35),(12,36),(13,37),(14,38),(15,39),(16,40),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,5),(2,6),(3,7),(4,8),(9,37),(10,38),(11,39),(12,40),(13,33),(14,34),(15,35),(16,36),(17,32),(18,25),(19,26),(20,27),(21,28),(22,29),(23,30),(24,31),(41,45),(42,46),(43,47),(44,48)], [(1,40,25),(2,33,26),(3,34,27),(4,35,28),(5,36,29),(6,37,30),(7,38,31),(8,39,32),(9,19,48),(10,20,41),(11,21,42),(12,22,43),(13,23,44),(14,24,45),(15,17,46),(16,18,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,47,5,43),(2,46,6,42),(3,45,7,41),(4,44,8,48),(9,28,13,32),(10,27,14,31),(11,26,15,30),(12,25,16,29),(17,37,21,33),(18,36,22,40),(19,35,23,39),(20,34,24,38)]])
Matrix representation of A4⋊Q16 ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 16 | 0 | 0 | 0 |
41 | 32 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
15 | 17 | 0 | 0 | 0 |
64 | 58 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 72 | 0 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,1,0,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,72,0,0,0,0,0,72],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[0,41,0,0,0,16,32,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[15,64,0,0,0,17,58,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,72,0] >;
A4⋊Q16 in GAP, Magma, Sage, TeX
A_4\rtimes Q_{16}
% in TeX
G:=Group("A4:Q16");
// GroupNames label
G:=SmallGroup(192,957);
// by ID
G=gap.SmallGroup(192,957);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,56,85,92,254,58,1124,4037,285,2358,475]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^8=1,e^2=d^4,c*a*c^-1=e*a*e^-1=a*b=b*a,a*d=d*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations
Export