# Extensions 1→N→G→Q→1 with N=S3×M4(2) and Q=C2

Direct product G=N×Q with N=S3×M4(2) and Q=C2
dρLabelID
C2×S3×M4(2)48C2xS3xM4(2)192,1302

Semidirect products G=N:Q with N=S3×M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×M4(2))⋊1C2 = S3×C8⋊C22φ: C2/C1C2 ⊆ Out S3×M4(2)248+(S3xM4(2)):1C2192,1331
(S3×M4(2))⋊2C2 = D84D6φ: C2/C1C2 ⊆ Out S3×M4(2)488-(S3xM4(2)):2C2192,1332
(S3×M4(2))⋊3C2 = S3×C8.C22φ: C2/C1C2 ⊆ Out S3×M4(2)488-(S3xM4(2)):3C2192,1335
(S3×M4(2))⋊4C2 = D24⋊C22φ: C2/C1C2 ⊆ Out S3×M4(2)488+(S3xM4(2)):4C2192,1336
(S3×M4(2))⋊5C2 = S3×C4.D4φ: C2/C1C2 ⊆ Out S3×M4(2)248+(S3xM4(2)):5C2192,303
(S3×M4(2))⋊6C2 = M4(2).19D6φ: C2/C1C2 ⊆ Out S3×M4(2)488-(S3xM4(2)):6C2192,304
(S3×M4(2))⋊7C2 = M4(2).21D6φ: C2/C1C2 ⊆ Out S3×M4(2)488+(S3xM4(2)):7C2192,310
(S3×M4(2))⋊8C2 = S3×C4≀C2φ: C2/C1C2 ⊆ Out S3×M4(2)244(S3xM4(2)):8C2192,379
(S3×M4(2))⋊9C2 = C423D6φ: C2/C1C2 ⊆ Out S3×M4(2)484(S3xM4(2)):9C2192,380
(S3×M4(2))⋊10C2 = M4(2)⋊26D6φ: C2/C1C2 ⊆ Out S3×M4(2)484(S3xM4(2)):10C2192,1304
(S3×M4(2))⋊11C2 = M4(2)⋊28D6φ: C2/C1C2 ⊆ Out S3×M4(2)484(S3xM4(2)):11C2192,1309
(S3×M4(2))⋊12C2 = S3×C8○D4φ: trivial image484(S3xM4(2)):12C2192,1308

Non-split extensions G=N.Q with N=S3×M4(2) and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×M4(2)).1C2 = S3×C4.10D4φ: C2/C1C2 ⊆ Out S3×M4(2)488-(S3xM4(2)).1C2192,309
(S3×M4(2)).2C2 = S3×C8.C4φ: C2/C1C2 ⊆ Out S3×M4(2)484(S3xM4(2)).2C2192,451
(S3×M4(2)).3C2 = M4(2).25D6φ: C2/C1C2 ⊆ Out S3×M4(2)484(S3xM4(2)).3C2192,452

׿
×
𝔽