Copied to
clipboard

G = M4(2).19D6order 192 = 26·3

2nd non-split extension by M4(2) of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2).19D6, (C4×S3).35D4, C4.147(S3×D4), C12.90(C2×D4), C4.D46S3, (C2×D4).122D6, C12.D44C2, (S3×M4(2))⋊6C2, C23.12(C4×S3), (C2×C12).2C23, C12.47D49C2, D6.2(C22⋊C4), (C6×D4).12C22, (C22×Dic3).4C4, C4.Dic3.1C22, (C2×Dic6).44C22, Dic3.16(C22⋊C4), (C3×M4(2)).17C22, C31(M4(2).8C22), (C2×C3⋊D4).2C4, (S3×C2×C4).2C22, C22.15(S3×C2×C4), C2.14(S3×C22⋊C4), C6.13(C2×C22⋊C4), (C2×C6).9(C22×C4), (C2×C4).2(C22×S3), (C22×C6).7(C2×C4), (C2×D42S3).2C2, (C3×C4.D4)⋊10C2, (C2×Dic3).2(C2×C4), (C22×S3).15(C2×C4), SmallGroup(192,304)

Series: Derived Chief Lower central Upper central

C1C2×C6 — M4(2).19D6
C1C3C6C12C2×C12S3×C2×C4C2×D42S3 — M4(2).19D6
C3C6C2×C6 — M4(2).19D6
C1C2C2×C4C4.D4

Generators and relations for M4(2).19D6
 G = < a,b,c,d | a8=b2=c6=1, d2=a4, bab=a5, cac-1=ab, dad-1=a5b, bc=cb, bd=db, dcd-1=a4c-1 >

Subgroups: 400 in 150 conjugacy classes, 51 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C3⋊C8, C24, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C4.D4, C4.D4, C4.10D4, C2×M4(2), C2×C4○D4, S3×C8, C8⋊S3, C4.Dic3, C3×M4(2), C2×Dic6, S3×C2×C4, D42S3, C22×Dic3, C2×C3⋊D4, C6×D4, M4(2).8C22, C12.47D4, C12.D4, C3×C4.D4, S3×M4(2), C2×D42S3, M4(2).19D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22⋊C4, C22×C4, C2×D4, C4×S3, C22×S3, C2×C22⋊C4, S3×C2×C4, S3×D4, M4(2).8C22, S3×C22⋊C4, M4(2).19D6

Smallest permutation representation of M4(2).19D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(26 30)(28 32)(33 37)(35 39)(42 46)(44 48)
(1 38 45 27 19 12)(2 35 46 32 20 9)(3 36 47 25 21 10)(4 33 48 30 22 15)(5 34 41 31 23 16)(6 39 42 28 24 13)(7 40 43 29 17 14)(8 37 44 26 18 11)
(1 12 5 16)(2 13 6 9)(3 10 7 14)(4 11 8 15)(17 40 21 36)(18 33 22 37)(19 38 23 34)(20 39 24 35)(25 43 29 47)(26 44 30 48)(27 41 31 45)(28 42 32 46)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32)(33,37)(35,39)(42,46)(44,48), (1,38,45,27,19,12)(2,35,46,32,20,9)(3,36,47,25,21,10)(4,33,48,30,22,15)(5,34,41,31,23,16)(6,39,42,28,24,13)(7,40,43,29,17,14)(8,37,44,26,18,11), (1,12,5,16)(2,13,6,9)(3,10,7,14)(4,11,8,15)(17,40,21,36)(18,33,22,37)(19,38,23,34)(20,39,24,35)(25,43,29,47)(26,44,30,48)(27,41,31,45)(28,42,32,46)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32)(33,37)(35,39)(42,46)(44,48), (1,38,45,27,19,12)(2,35,46,32,20,9)(3,36,47,25,21,10)(4,33,48,30,22,15)(5,34,41,31,23,16)(6,39,42,28,24,13)(7,40,43,29,17,14)(8,37,44,26,18,11), (1,12,5,16)(2,13,6,9)(3,10,7,14)(4,11,8,15)(17,40,21,36)(18,33,22,37)(19,38,23,34)(20,39,24,35)(25,43,29,47)(26,44,30,48)(27,41,31,45)(28,42,32,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(26,30),(28,32),(33,37),(35,39),(42,46),(44,48)], [(1,38,45,27,19,12),(2,35,46,32,20,9),(3,36,47,25,21,10),(4,33,48,30,22,15),(5,34,41,31,23,16),(6,39,42,28,24,13),(7,40,43,29,17,14),(8,37,44,26,18,11)], [(1,12,5,16),(2,13,6,9),(3,10,7,14),(4,11,8,15),(17,40,21,36),(18,33,22,37),(19,38,23,34),(20,39,24,35),(25,43,29,47),(26,44,30,48),(27,41,31,45),(28,42,32,46)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G6A6B6C6D8A8B8C8D8E8F8G8H12A12B24A24B24C24D
order122222234444444666688888888121224242424
size112446622233612122488444412121212448888

33 irreducible representations

dim1111111122222448
type+++++++++++-
imageC1C2C2C2C2C2C4C4S3D4D6D6C4×S3S3×D4M4(2).8C22M4(2).19D6
kernelM4(2).19D6C12.47D4C12.D4C3×C4.D4S3×M4(2)C2×D42S3C22×Dic3C2×C3⋊D4C4.D4C4×S3M4(2)C2×D4C23C4C3C1
# reps1211214414214221

Matrix representation of M4(2).19D6 in GL6(𝔽73)

100000
010000
0046724671
0000460
000100
005901327
,
100000
010000
001000
0007200
000010
004604672
,
0720000
1720000
000010
0046724671
001000
000001
,
1720000
0720000
0000720
00271272
001000
004672072

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,46,0,0,59,0,0,72,0,1,0,0,0,46,46,0,13,0,0,71,0,0,27],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,46,0,0,0,72,0,0,0,0,0,0,1,46,0,0,0,0,0,72],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,46,1,0,0,0,0,72,0,0,0,0,1,46,0,0,0,0,0,71,0,1],[1,0,0,0,0,0,72,72,0,0,0,0,0,0,0,27,1,46,0,0,0,1,0,72,0,0,72,27,0,0,0,0,0,2,0,72] >;

M4(2).19D6 in GAP, Magma, Sage, TeX

M_4(2)._{19}D_6
% in TeX

G:=Group("M4(2).19D6");
// GroupNames label

G:=SmallGroup(192,304);
// by ID

G=gap.SmallGroup(192,304);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,219,58,570,136,438,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^6=1,d^2=a^4,b*a*b=a^5,c*a*c^-1=a*b,d*a*d^-1=a^5*b,b*c=c*b,b*d=d*b,d*c*d^-1=a^4*c^-1>;
// generators/relations

׿
×
𝔽