Extensions 1→N→G→Q→1 with N=C8 and Q=C2×A4

Direct product G=N×Q with N=C8 and Q=C2×A4

Semidirect products G=N:Q with N=C8 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C81(C2×A4) = A4×D8φ: C2×A4/A4C2 ⊆ Aut C8246+C8:1(C2xA4)192,1014
C82(C2×A4) = A4×SD16φ: C2×A4/A4C2 ⊆ Aut C8246C8:2(C2xA4)192,1015
C83(C2×A4) = A4×M4(2)φ: C2×A4/A4C2 ⊆ Aut C8246C8:3(C2xA4)192,1011

Non-split extensions G=N.Q with N=C8 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C8.1(C2×A4) = A4×Q16φ: C2×A4/A4C2 ⊆ Aut C8486-C8.1(C2xA4)192,1016
C8.2(C2×A4) = Q16.A4φ: C2×A4/A4C2 ⊆ Aut C8484+C8.2(C2xA4)192,1017
C8.3(C2×A4) = D8.A4φ: C2×A4/A4C2 ⊆ Aut C8324-C8.3(C2xA4)192,1019
C8.4(C2×A4) = SD16.A4φ: C2×A4/A4C2 ⊆ Aut C8324C8.4(C2xA4)192,1018
C8.5(C2×A4) = M4(2).A4φ: C2×A4/A4C2 ⊆ Aut C8324C8.5(C2xA4)192,1013
C8.6(C2×A4) = A4×C16central extension (φ=1)483C8.6(C2xA4)192,203
C8.7(C2×A4) = C16.A4central extension (φ=1)642C8.7(C2xA4)192,204
C8.8(C2×A4) = C2×C8.A4central extension (φ=1)64C8.8(C2xA4)192,1012