Copied to
clipboard

G = Q16.A4order 192 = 26·3

The non-split extension by Q16 of A4 acting through Inn(Q16)

non-abelian, soluble

Aliases: Q16.A4, SL2(F3).11D4, 2+ 1+4.2C6, D4oD8:C3, C8oD4.C6, C8.A4:3C2, C8.2(C2xA4), C2.9(D4xA4), Q8.A4:4C2, Q8.3(C3xD4), Q8.4(C2xA4), C4.4(C22xA4), C4.A4.15C22, C4oD4.1(C2xC6), SmallGroup(192,1017)

Series: Derived Chief Lower central Upper central

C1C2C4oD4 — Q16.A4
C1C2Q8C4oD4C4.A4Q8.A4 — Q16.A4
Q8C4oD4 — Q16.A4
C1C2C4Q16

Generators and relations for Q16.A4
 G = < a,b,c,d,e | a8=e3=1, b2=c2=d2=a4, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a4c, ece-1=a4cd, ede-1=c >

Subgroups: 291 in 73 conjugacy classes, 19 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C8, C8, C2xC4, D4, Q8, Q8, C23, C12, C2xC8, M4(2), D8, SD16, Q16, C2xD4, C4oD4, C4oD4, C24, SL2(F3), C3xQ8, C8oD4, C2xD8, C4oD8, C8:C22, 2+ 1+4, C3xQ16, C4.A4, C4.A4, D4oD8, C8.A4, Q8.A4, Q16.A4
Quotients: C1, C2, C3, C22, C6, D4, A4, C2xC6, C3xD4, C2xA4, C22xA4, D4xA4, Q16.A4

Character table of Q16.A4

 class 12A2B2C2D3A3B4A4B4C4D6A6B8A8B8C12A12B12C12D12E12F24A24B24C24D
 size 116121244244644221288161616168888
ρ111111111111111111111111111    trivial
ρ21111-11111-1111-1-1-111-1-111-1-1-1-1    linear of order 2
ρ3111-1-1111-1-111111111-1-1-1-11111    linear of order 2
ρ4111-11111-11111-1-1-11111-1-1-1-1-1-1    linear of order 2
ρ5111-1-1ζ3ζ321-1-11ζ3ζ32111ζ3ζ32ζ6ζ65ζ6ζ65ζ32ζ32ζ3ζ3    linear of order 6
ρ6111-11ζ32ζ31-111ζ32ζ3-1-1-1ζ32ζ3ζ3ζ32ζ65ζ6ζ65ζ65ζ6ζ6    linear of order 6
ρ71111-1ζ3ζ3211-11ζ3ζ32-1-1-1ζ3ζ32ζ6ζ65ζ32ζ3ζ6ζ6ζ65ζ65    linear of order 6
ρ8111-1-1ζ32ζ31-1-11ζ32ζ3111ζ32ζ3ζ65ζ6ζ65ζ6ζ3ζ3ζ32ζ32    linear of order 6
ρ9111-11ζ3ζ321-111ζ3ζ32-1-1-1ζ3ζ32ζ32ζ3ζ6ζ65ζ6ζ6ζ65ζ65    linear of order 6
ρ101111-1ζ32ζ311-11ζ32ζ3-1-1-1ζ32ζ3ζ65ζ6ζ3ζ32ζ65ζ65ζ6ζ6    linear of order 6
ρ1111111ζ3ζ321111ζ3ζ32111ζ3ζ32ζ32ζ3ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ1211111ζ32ζ31111ζ32ζ3111ζ32ζ3ζ3ζ32ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ1322-20022-200222000-2-200000000    orthogonal lifted from D4
ρ1422-200-1+-3-1--3-2002-1+-3-1--30001--31+-300000000    complex lifted from C3xD4
ρ1522-200-1--3-1+-3-2002-1--3-1+-30001+-31--300000000    complex lifted from C3xD4
ρ1633-11-1003-33-100-3-310000000000    orthogonal lifted from C2xA4
ρ1733-1-1-100333-10033-10000000000    orthogonal lifted from A4
ρ1833-111003-3-3-10033-10000000000    orthogonal lifted from C2xA4
ρ1933-1-110033-3-100-3-310000000000    orthogonal lifted from C2xA4
ρ204-4000-2-2000022-22220000000-22-22    orthogonal faithful
ρ214-4000-2-200002222-2200000002-22-2    orthogonal faithful
ρ224-40001--31+-30000-1+-3-1--322-22000000083ζ328ζ3287ζ3285ζ3283ζ38ζ387ζ385ζ3    complex faithful
ρ234-40001--31+-30000-1+-3-1--3-2222000000087ζ3285ζ3283ζ328ζ3287ζ385ζ383ζ38ζ3    complex faithful
ρ244-40001+-31--30000-1--3-1+-322-22000000083ζ38ζ387ζ385ζ383ζ328ζ3287ζ3285ζ32    complex faithful
ρ254-40001+-31--30000-1--3-1+-3-2222000000087ζ385ζ383ζ38ζ387ζ3285ζ3283ζ328ζ32    complex faithful
ρ266620000-600-2000000000000000    orthogonal lifted from D4xA4

Smallest permutation representation of Q16.A4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 15 5 11)(2 14 6 10)(3 13 7 9)(4 12 8 16)(17 32 21 28)(18 31 22 27)(19 30 23 26)(20 29 24 25)(33 45 37 41)(34 44 38 48)(35 43 39 47)(36 42 40 46)
(1 3 5 7)(2 4 6 8)(9 15 13 11)(10 16 14 12)(17 26 21 30)(18 27 22 31)(19 28 23 32)(20 29 24 25)(33 45 37 41)(34 46 38 42)(35 47 39 43)(36 48 40 44)
(1 11 5 15)(2 12 6 16)(3 13 7 9)(4 14 8 10)(17 23 21 19)(18 24 22 20)(25 27 29 31)(26 28 30 32)(33 47 37 43)(34 48 38 44)(35 41 39 45)(36 42 40 46)
(1 26 43)(2 27 44)(3 28 45)(4 29 46)(5 30 47)(6 31 48)(7 32 41)(8 25 42)(9 21 33)(10 22 34)(11 23 35)(12 24 36)(13 17 37)(14 18 38)(15 19 39)(16 20 40)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,45,37,41)(34,44,38,48)(35,43,39,47)(36,42,40,46), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,26,21,30)(18,27,22,31)(19,28,23,32)(20,29,24,25)(33,45,37,41)(34,46,38,42)(35,47,39,43)(36,48,40,44), (1,11,5,15)(2,12,6,16)(3,13,7,9)(4,14,8,10)(17,23,21,19)(18,24,22,20)(25,27,29,31)(26,28,30,32)(33,47,37,43)(34,48,38,44)(35,41,39,45)(36,42,40,46), (1,26,43)(2,27,44)(3,28,45)(4,29,46)(5,30,47)(6,31,48)(7,32,41)(8,25,42)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(13,17,37)(14,18,38)(15,19,39)(16,20,40)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,45,37,41)(34,44,38,48)(35,43,39,47)(36,42,40,46), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,26,21,30)(18,27,22,31)(19,28,23,32)(20,29,24,25)(33,45,37,41)(34,46,38,42)(35,47,39,43)(36,48,40,44), (1,11,5,15)(2,12,6,16)(3,13,7,9)(4,14,8,10)(17,23,21,19)(18,24,22,20)(25,27,29,31)(26,28,30,32)(33,47,37,43)(34,48,38,44)(35,41,39,45)(36,42,40,46), (1,26,43)(2,27,44)(3,28,45)(4,29,46)(5,30,47)(6,31,48)(7,32,41)(8,25,42)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(13,17,37)(14,18,38)(15,19,39)(16,20,40) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,15,5,11),(2,14,6,10),(3,13,7,9),(4,12,8,16),(17,32,21,28),(18,31,22,27),(19,30,23,26),(20,29,24,25),(33,45,37,41),(34,44,38,48),(35,43,39,47),(36,42,40,46)], [(1,3,5,7),(2,4,6,8),(9,15,13,11),(10,16,14,12),(17,26,21,30),(18,27,22,31),(19,28,23,32),(20,29,24,25),(33,45,37,41),(34,46,38,42),(35,47,39,43),(36,48,40,44)], [(1,11,5,15),(2,12,6,16),(3,13,7,9),(4,14,8,10),(17,23,21,19),(18,24,22,20),(25,27,29,31),(26,28,30,32),(33,47,37,43),(34,48,38,44),(35,41,39,45),(36,42,40,46)], [(1,26,43),(2,27,44),(3,28,45),(4,29,46),(5,30,47),(6,31,48),(7,32,41),(8,25,42),(9,21,33),(10,22,34),(11,23,35),(12,24,36),(13,17,37),(14,18,38),(15,19,39),(16,20,40)]])

Matrix representation of Q16.A4 in GL4(F7) generated by

4536
4244
3301
2562
,
6530
0062
4456
2563
,
6205
5043
2543
6644
,
3663
4032
1605
3324
,
6263
6332
0020
5511
G:=sub<GL(4,GF(7))| [4,4,3,2,5,2,3,5,3,4,0,6,6,4,1,2],[6,0,4,2,5,0,4,5,3,6,5,6,0,2,6,3],[6,5,2,6,2,0,5,6,0,4,4,4,5,3,3,4],[3,4,1,3,6,0,6,3,6,3,0,2,3,2,5,4],[6,6,0,5,2,3,0,5,6,3,2,1,3,2,0,1] >;

Q16.A4 in GAP, Magma, Sage, TeX

Q_{16}.A_4
% in TeX

G:=Group("Q16.A4");
// GroupNames label

G:=SmallGroup(192,1017);
// by ID

G=gap.SmallGroup(192,1017);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-2,672,197,680,3027,1522,248,438,172,775,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=e^3=1,b^2=c^2=d^2=a^4,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^4*c,e*c*e^-1=a^4*c*d,e*d*e^-1=c>;
// generators/relations

Export

Character table of Q16.A4 in TeX

׿
x
:
Z
F
o
wr
Q
<