Extensions 1→N→G→Q→1 with N=C4 and Q=C4:Dic3

Direct product G=NxQ with N=C4 and Q=C4:Dic3
dρLabelID
C4xC4:Dic3192C4xC4:Dic3192,493

Semidirect products G=N:Q with N=C4 and Q=C4:Dic3
extensionφ:Q→Aut NdρLabelID
C4:1(C4:Dic3) = C4:C4:6Dic3φ: C4:Dic3/C2xDic3C2 ⊆ Aut C4192C4:1(C4:Dic3)192,543
C4:2(C4:Dic3) = C42:10Dic3φ: C4:Dic3/C2xC12C2 ⊆ Aut C4192C4:2(C4:Dic3)192,494

Non-split extensions G=N.Q with N=C4 and Q=C4:Dic3
extensionφ:Q→Aut NdρLabelID
C4.1(C4:Dic3) = C12.C42φ: C4:Dic3/C2xDic3C2 ⊆ Aut C4192C4.1(C4:Dic3)192,88
C4.2(C4:Dic3) = C12.2C42φ: C4:Dic3/C2xDic3C2 ⊆ Aut C448C4.2(C4:Dic3)192,91
C4.3(C4:Dic3) = M4(2):Dic3φ: C4:Dic3/C2xDic3C2 ⊆ Aut C496C4.3(C4:Dic3)192,113
C4.4(C4:Dic3) = M4(2):4Dic3φ: C4:Dic3/C2xDic3C2 ⊆ Aut C4484C4.4(C4:Dic3)192,118
C4.5(C4:Dic3) = C42.43D6φ: C4:Dic3/C2xDic3C2 ⊆ Aut C496C4.5(C4:Dic3)192,558
C4.6(C4:Dic3) = C23.52D12φ: C4:Dic3/C2xDic3C2 ⊆ Aut C496C4.6(C4:Dic3)192,680
C4.7(C4:Dic3) = C23.9Dic6φ: C4:Dic3/C2xDic3C2 ⊆ Aut C4484C4.7(C4:Dic3)192,684
C4.8(C4:Dic3) = C48:5C4φ: C4:Dic3/C2xC12C2 ⊆ Aut C4192C4.8(C4:Dic3)192,63
C4.9(C4:Dic3) = C48:6C4φ: C4:Dic3/C2xC12C2 ⊆ Aut C4192C4.9(C4:Dic3)192,64
C4.10(C4:Dic3) = C48.C4φ: C4:Dic3/C2xC12C2 ⊆ Aut C4962C4.10(C4:Dic3)192,65
C4.11(C4:Dic3) = C24.Q8φ: C4:Dic3/C2xC12C2 ⊆ Aut C4484C4.11(C4:Dic3)192,72
C4.12(C4:Dic3) = C42:3Dic3φ: C4:Dic3/C2xC12C2 ⊆ Aut C4484C4.12(C4:Dic3)192,90
C4.13(C4:Dic3) = (C2xC24):C4φ: C4:Dic3/C2xC12C2 ⊆ Aut C4484C4.13(C4:Dic3)192,115
C4.14(C4:Dic3) = C12:7M4(2)φ: C4:Dic3/C2xC12C2 ⊆ Aut C496C4.14(C4:Dic3)192,483
C4.15(C4:Dic3) = C42:11Dic3φ: C4:Dic3/C2xC12C2 ⊆ Aut C4192C4.15(C4:Dic3)192,495
C4.16(C4:Dic3) = C2xC8:Dic3φ: C4:Dic3/C2xC12C2 ⊆ Aut C4192C4.16(C4:Dic3)192,663
C4.17(C4:Dic3) = C2xC24:1C4φ: C4:Dic3/C2xC12C2 ⊆ Aut C4192C4.17(C4:Dic3)192,664
C4.18(C4:Dic3) = C12:C16central extension (φ=1)192C4.18(C4:Dic3)192,21
C4.19(C4:Dic3) = C24.1C8central extension (φ=1)482C4.19(C4:Dic3)192,22
C4.20(C4:Dic3) = C12.8C42central extension (φ=1)48C4.20(C4:Dic3)192,82
C4.21(C4:Dic3) = (C2xC24):5C4central extension (φ=1)192C4.21(C4:Dic3)192,109
C4.22(C4:Dic3) = C2xC12:C8central extension (φ=1)192C4.22(C4:Dic3)192,482
C4.23(C4:Dic3) = C23.27D12central extension (φ=1)96C4.23(C4:Dic3)192,665
C4.24(C4:Dic3) = C2xC24.C4central extension (φ=1)96C4.24(C4:Dic3)192,666

׿
x
:
Z
F
o
wr
Q
<