metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C4⋊Dic3, C12⋊1C4, C6.4D4, C6.2Q8, C2.1D12, C2.2Dic6, C22.5D6, C3⋊2(C4⋊C4), (C2×C4).3S3, C6.8(C2×C4), (C2×C12).2C2, (C2×C6).5C22, C2.4(C2×Dic3), (C2×Dic3).2C2, SmallGroup(48,13)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4⋊Dic3
G = < a,b,c | a4=b6=1, c2=b3, ab=ba, cac-1=a-1, cbc-1=b-1 >
Character table of C4⋊Dic3
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | -i | i | i | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | i | i | -i | -i | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -i | i | i | -i | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | i | -i | -i | i | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ12 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ13 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | 2 | -2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | √3 | -√3 | -√3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -√3 | √3 | √3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
(1 27 16 24)(2 28 17 19)(3 29 18 20)(4 30 13 21)(5 25 14 22)(6 26 15 23)(7 33 45 38)(8 34 46 39)(9 35 47 40)(10 36 48 41)(11 31 43 42)(12 32 44 37)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 33 4 36)(2 32 5 35)(3 31 6 34)(7 30 10 27)(8 29 11 26)(9 28 12 25)(13 41 16 38)(14 40 17 37)(15 39 18 42)(19 44 22 47)(20 43 23 46)(21 48 24 45)
G:=sub<Sym(48)| (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,33,45,38)(8,34,46,39)(9,35,47,40)(10,36,48,41)(11,31,43,42)(12,32,44,37), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45)>;
G:=Group( (1,27,16,24)(2,28,17,19)(3,29,18,20)(4,30,13,21)(5,25,14,22)(6,26,15,23)(7,33,45,38)(8,34,46,39)(9,35,47,40)(10,36,48,41)(11,31,43,42)(12,32,44,37), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,33,4,36)(2,32,5,35)(3,31,6,34)(7,30,10,27)(8,29,11,26)(9,28,12,25)(13,41,16,38)(14,40,17,37)(15,39,18,42)(19,44,22,47)(20,43,23,46)(21,48,24,45) );
G=PermutationGroup([[(1,27,16,24),(2,28,17,19),(3,29,18,20),(4,30,13,21),(5,25,14,22),(6,26,15,23),(7,33,45,38),(8,34,46,39),(9,35,47,40),(10,36,48,41),(11,31,43,42),(12,32,44,37)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,33,4,36),(2,32,5,35),(3,31,6,34),(7,30,10,27),(8,29,11,26),(9,28,12,25),(13,41,16,38),(14,40,17,37),(15,39,18,42),(19,44,22,47),(20,43,23,46),(21,48,24,45)]])
C4⋊Dic3 is a maximal subgroup of
C6.Q16 C12.Q8 C2.Dic12 C8⋊Dic3 C24⋊1C4 C2.D24 D4⋊Dic3 Q8⋊2Dic3 C4×Dic6 C12⋊2Q8 C12.6Q8 C4×D12 Dic3.D4 C23.8D6 C23.9D6 C23.21D6 C12⋊Q8 Dic3.Q8 C4.Dic6 S3×C4⋊C4 C4⋊C4⋊7S3 C4.D12 C4⋊C4⋊S3 C12.48D4 C23.26D6 C12⋊7D4 D4×Dic3 D6⋊3D4 Q8×Dic3 D6⋊3Q8 C4⋊Dic9 Dic3⋊Dic3 C12⋊Dic3 Q8.D12 SL2(𝔽3)⋊Q8 C24.4D6 (C2×C4).S4 C30.Q8 C60⋊5C4 C60⋊C4 C42.Q8 C84⋊C4 C6.S3≀C2 (C3×C6).9D12 C6.2PSU3(𝔽2) C33⋊9(C4⋊C4)
C4⋊Dic3 is a maximal quotient of
C12⋊C8 C8⋊Dic3 C24⋊1C4 C24.C4 C6.C42 C4⋊Dic9 Dic3⋊Dic3 C12⋊Dic3 C24.4D6 C30.Q8 C60⋊5C4 C60⋊C4 C42.Q8 C84⋊C4 (C3×C6).9D12 C6.2PSU3(𝔽2) C33⋊9(C4⋊C4)
Matrix representation of C4⋊Dic3 ►in GL3(𝔽13) generated by
1 | 0 | 0 |
0 | 3 | 6 |
0 | 7 | 10 |
12 | 0 | 0 |
0 | 0 | 12 |
0 | 1 | 1 |
8 | 0 | 0 |
0 | 5 | 0 |
0 | 8 | 8 |
G:=sub<GL(3,GF(13))| [1,0,0,0,3,7,0,6,10],[12,0,0,0,0,1,0,12,1],[8,0,0,0,5,8,0,0,8] >;
C4⋊Dic3 in GAP, Magma, Sage, TeX
C_4\rtimes {\rm Dic}_3
% in TeX
G:=Group("C4:Dic3");
// GroupNames label
G:=SmallGroup(48,13);
// by ID
G=gap.SmallGroup(48,13);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,20,101,46,804]);
// Polycyclic
G:=Group<a,b,c|a^4=b^6=1,c^2=b^3,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C4⋊Dic3 in TeX
Character table of C4⋊Dic3 in TeX