direct product, abelian, monomial, 2-elementary
Aliases: C2×C12, SmallGroup(24,9)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C12 |
C1 — C2×C12 |
C1 — C2×C12 |
Generators and relations for C2×C12
G = < a,b | a2=b12=1, ab=ba >
Character table of C2×C12
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | i | -i | 1 | -1 | -1 | -1 | 1 | -1 | -i | -i | i | -i | i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | 1 | -1 | -1 | -1 | 1 | i | -i | i | -i | -i | i | -i | i | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | -i | i | 1 | -1 | -1 | -1 | 1 | -1 | i | i | -i | i | -i | i | -i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | 1 | -1 | -1 | -1 | 1 | -i | i | -i | i | i | -i | i | -i | linear of order 4 |
ρ9 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ10 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | 1 | 1 | -1 | -1 | ζ6 | ζ6 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | ζ3 | ζ65 | ζ65 | ζ6 | ζ32 | linear of order 6 |
ρ11 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | i | -i | i | -i | ζ32 | ζ6 | ζ65 | ζ6 | ζ3 | ζ65 | ζ43ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ4ζ32 | linear of order 12 |
ρ12 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | i | -i | -i | i | ζ6 | ζ32 | ζ65 | ζ6 | ζ65 | ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | linear of order 12 |
ρ13 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ14 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | -1 | -1 | 1 | 1 | ζ6 | ζ6 | ζ3 | ζ32 | ζ65 | ζ65 | ζ32 | ζ6 | ζ65 | ζ65 | ζ3 | ζ3 | ζ32 | ζ6 | linear of order 6 |
ρ15 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | -i | i | -i | i | ζ32 | ζ6 | ζ65 | ζ6 | ζ3 | ζ65 | ζ4ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ43ζ32 | linear of order 12 |
ρ16 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | -i | i | i | -i | ζ6 | ζ32 | ζ65 | ζ6 | ζ65 | ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | linear of order 12 |
ρ17 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ18 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | 1 | 1 | -1 | -1 | ζ65 | ζ65 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | ζ32 | ζ6 | ζ6 | ζ65 | ζ3 | linear of order 6 |
ρ19 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | i | -i | i | -i | ζ3 | ζ65 | ζ6 | ζ65 | ζ32 | ζ6 | ζ43ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ4ζ3 | linear of order 12 |
ρ20 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | i | -i | -i | i | ζ65 | ζ3 | ζ6 | ζ65 | ζ6 | ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | linear of order 12 |
ρ21 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ22 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | -1 | -1 | 1 | 1 | ζ65 | ζ65 | ζ32 | ζ3 | ζ6 | ζ6 | ζ3 | ζ65 | ζ6 | ζ6 | ζ32 | ζ32 | ζ3 | ζ65 | linear of order 6 |
ρ23 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | -i | i | -i | i | ζ3 | ζ65 | ζ6 | ζ65 | ζ32 | ζ6 | ζ4ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ43ζ3 | linear of order 12 |
ρ24 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | -i | i | i | -i | ζ65 | ζ3 | ζ6 | ζ65 | ζ6 | ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | linear of order 12 |
(1 16)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 13)(11 14)(12 15)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
G:=sub<Sym(24)| (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,13)(11,14)(12,15), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)>;
G:=Group( (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,13)(11,14)(12,15), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24) );
G=PermutationGroup([[(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,13),(11,14),(12,15)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,2);
C2×C12 is a maximal subgroup of
C4.Dic3 Dic3⋊C4 C4⋊Dic3 D6⋊C4 C4○D12
action | f(x) | Disc(f) |
---|---|---|
24T2 | x24-x23+x19-x18+x17-x16+x14-x13+x12-x11+x10-x8+x7-x6+x5-x+1 | 518·720 |
Matrix representation of C2×C12 ►in GL2(𝔽13) generated by
12 | 0 |
0 | 12 |
9 | 0 |
0 | 5 |
G:=sub<GL(2,GF(13))| [12,0,0,12],[9,0,0,5] >;
C2×C12 in GAP, Magma, Sage, TeX
C_2\times C_{12}
% in TeX
G:=Group("C2xC12");
// GroupNames label
G:=SmallGroup(24,9);
// by ID
G=gap.SmallGroup(24,9);
# by ID
G:=PCGroup([4,-2,-2,-3,-2,48]);
// Polycyclic
G:=Group<a,b|a^2=b^12=1,a*b=b*a>;
// generators/relations
Export
Subgroup lattice of C2×C12 in TeX
Character table of C2×C12 in TeX