Extensions 1→N→G→Q→1 with N=D83S3 and Q=C2

Direct product G=N×Q with N=D83S3 and Q=C2
dρLabelID
C2×D83S396C2xD8:3S3192,1315

Semidirect products G=N:Q with N=D83S3 and Q=C2
extensionφ:Q→Out NdρLabelID
D83S31C2 = D84D6φ: C2/C1C2 ⊆ Out D83S3488-D8:3S3:1C2192,1332
D83S32C2 = D86D6φ: C2/C1C2 ⊆ Out D83S3488-D8:3S3:2C2192,1334
D83S33C2 = D8⋊D6φ: C2/C1C2 ⊆ Out D83S3484D8:3S3:3C2192,470
D83S34C2 = D163S3φ: C2/C1C2 ⊆ Out D83S3964-D8:3S3:4C2192,471
D83S35C2 = D6.2D8φ: C2/C1C2 ⊆ Out D83S3964D8:3S3:5C2192,475
D83S36C2 = D813D6φ: C2/C1C2 ⊆ Out D83S3484D8:3S3:6C2192,1316
D83S37C2 = D8.10D6φ: C2/C1C2 ⊆ Out D83S3964-D8:3S3:7C2192,1330
D83S38C2 = S3×C4○D8φ: trivial image484D8:3S3:8C2192,1326

Non-split extensions G=N.Q with N=D83S3 and Q=C2
extensionφ:Q→Out NdρLabelID
D83S3.C2 = SD32⋊S3φ: C2/C1C2 ⊆ Out D83S3964-D8:3S3.C2192,474

׿
×
𝔽