Copied to
clipboard

G = SD32:S3order 192 = 26·3

2nd semidirect product of SD32 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8.4D6, D6.8D8, C16.2D6, SD32:2S3, Q16.1D6, Dic24:6C2, C48.9C22, C24.18C23, Dic3.10D8, Dic12.3C22, C3:C8.4D4, C4.6(S3xD4), D6.C8:2C2, D8:3S3.C2, D8.S3:4C2, (S3xQ16):4C2, C3:Q32:1C2, (C4xS3).9D4, C6.37(C2xD8), C2.21(S3xD8), (C3xSD32):2C2, C12.12(C2xD4), C3:2(Q32:C2), C3:C16.1C22, (S3xC8).5C22, C8.24(C22xS3), (C3xD8).4C22, (C3xQ16).2C22, SmallGroup(192,474)

Series: Derived Chief Lower central Upper central

C1C24 — SD32:S3
C1C3C6C12C24S3xC8S3xQ16 — SD32:S3
C3C6C12C24 — SD32:S3
C1C2C4C8SD32

Generators and relations for SD32:S3
 G = < a,b,c,d | a16=b2=c3=d2=1, bab=a7, ac=ca, dad=a9, bc=cb, dbd=a8b, dcd=c-1 >

Subgroups: 268 in 82 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2xC4, D4, Q8, Dic3, Dic3, C12, C12, D6, C2xC6, C16, C16, C2xC8, D8, SD16, Q16, Q16, C2xQ8, C4oD4, C3:C8, C24, Dic6, C4xS3, C4xS3, C2xDic3, C3:D4, C3xD4, C3xQ8, M5(2), SD32, SD32, Q32, C2xQ16, C4oD8, C3:C16, C48, S3xC8, Dic12, D4.S3, C3:Q16, C3xD8, C3xQ16, D4:2S3, S3xQ8, Q32:C2, D6.C8, Dic24, D8.S3, C3:Q32, C3xSD32, D8:3S3, S3xQ16, SD32:S3
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, C22xS3, C2xD8, S3xD4, Q32:C2, S3xD8, SD32:S3

Character table of SD32:S3

 class 12A2B2C34A4B4C4D4E6A6B8A8B8C12A12B16A16B16C16D24A24B48A48B48C48D
 size 1168226824242162212416441212444444
ρ1111111111111111111111111111    trivial
ρ2111-111111-11-111111-1-1-1-111-1-1-1-1    linear of order 2
ρ311-1111-1-11-11111-11-1-1-11111-1-1-1-1    linear of order 2
ρ411-1-111-1-1111-111-11-111-1-1111111    linear of order 2
ρ51111111-1-11111111-1-1-1-1-111-1-1-1-1    linear of order 2
ρ6111-1111-1-1-11-11111-11111111111    linear of order 2
ρ711-1111-11-1-11111-11111-1-1111111    linear of order 2
ρ811-1-111-11-111-111-111-1-11111-1-1-1-1    linear of order 2
ρ9220-2-120200-11220-1-1-2-200-1-11111    orthogonal lifted from D6
ρ10222022200020-2-2-2200000-2-20000    orthogonal lifted from D4
ρ112202-120-200-1-1220-11-2-200-1-11111    orthogonal lifted from D6
ρ12220-2-120-200-11220-112200-1-1-1-1-1-1    orthogonal lifted from D6
ρ132202-120200-1-1220-1-12200-1-1-1-1-1-1    orthogonal lifted from S3
ρ1422-2022-200020-2-22200000-2-20000    orthogonal lifted from D4
ρ1522-202-2200020000-202-2-2200-2-222    orthogonal lifted from D8
ρ1622202-2-200020000-202-22-200-2-222    orthogonal lifted from D8
ρ1722202-2-200020000-20-22-220022-2-2    orthogonal lifted from D8
ρ1822-202-2200020000-20-222-20022-2-2    orthogonal lifted from D8
ρ194400-240000-20-4-40-200000220000    orthogonal lifted from S3xD4
ρ204400-2-40000-200002022-22000022-2-2    orthogonal lifted from S3xD8
ρ214400-2-40000-2000020-22220000-2-222    orthogonal lifted from S3xD8
ρ224-400400000-40-22220000000-22220000    symplectic lifted from Q32:C2, Schur index 2
ρ234-400400000-4022-22000000022-220000    symplectic lifted from Q32:C2, Schur index 2
ρ244-400-20000020-222200000002-2165ζ3165+2ζ163ζ3163165ζ32165+2ζ163ζ321631615ζ321615+2ζ169ζ32169167ζ32167+2ζ16ζ3216    symplectic faithful, Schur index 2
ρ254-400-2000002022-220000000-22167ζ32167+2ζ16ζ32161615ζ321615+2ζ169ζ32169165ζ3165+2ζ163ζ3163165ζ32165+2ζ163ζ32163    symplectic faithful, Schur index 2
ρ264-400-20000020-222200000002-2165ζ32165+2ζ163ζ32163165ζ3165+2ζ163ζ3163167ζ32167+2ζ16ζ32161615ζ321615+2ζ169ζ32169    symplectic faithful, Schur index 2
ρ274-400-2000002022-220000000-221615ζ321615+2ζ169ζ32169167ζ32167+2ζ16ζ3216165ζ32165+2ζ163ζ32163165ζ3165+2ζ163ζ3163    symplectic faithful, Schur index 2

Smallest permutation representation of SD32:S3
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 25)(18 32)(19 23)(20 30)(22 28)(24 26)(27 31)(33 45)(34 36)(35 43)(37 41)(38 48)(40 46)(42 44)(49 57)(50 64)(51 55)(52 62)(54 60)(56 58)(59 63)(65 69)(66 76)(68 74)(70 72)(71 79)(73 77)(78 80)(81 83)(82 90)(84 88)(85 95)(87 93)(89 91)(92 96)
(1 94 39)(2 95 40)(3 96 41)(4 81 42)(5 82 43)(6 83 44)(7 84 45)(8 85 46)(9 86 47)(10 87 48)(11 88 33)(12 89 34)(13 90 35)(14 91 36)(15 92 37)(16 93 38)(17 57 79)(18 58 80)(19 59 65)(20 60 66)(21 61 67)(22 62 68)(23 63 69)(24 64 70)(25 49 71)(26 50 72)(27 51 73)(28 52 74)(29 53 75)(30 54 76)(31 55 77)(32 56 78)
(1 25)(2 18)(3 27)(4 20)(5 29)(6 22)(7 31)(8 24)(9 17)(10 26)(11 19)(12 28)(13 21)(14 30)(15 23)(16 32)(33 59)(34 52)(35 61)(36 54)(37 63)(38 56)(39 49)(40 58)(41 51)(42 60)(43 53)(44 62)(45 55)(46 64)(47 57)(48 50)(65 88)(66 81)(67 90)(68 83)(69 92)(70 85)(71 94)(72 87)(73 96)(74 89)(75 82)(76 91)(77 84)(78 93)(79 86)(80 95)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,25)(18,32)(19,23)(20,30)(22,28)(24,26)(27,31)(33,45)(34,36)(35,43)(37,41)(38,48)(40,46)(42,44)(49,57)(50,64)(51,55)(52,62)(54,60)(56,58)(59,63)(65,69)(66,76)(68,74)(70,72)(71,79)(73,77)(78,80)(81,83)(82,90)(84,88)(85,95)(87,93)(89,91)(92,96), (1,94,39)(2,95,40)(3,96,41)(4,81,42)(5,82,43)(6,83,44)(7,84,45)(8,85,46)(9,86,47)(10,87,48)(11,88,33)(12,89,34)(13,90,35)(14,91,36)(15,92,37)(16,93,38)(17,57,79)(18,58,80)(19,59,65)(20,60,66)(21,61,67)(22,62,68)(23,63,69)(24,64,70)(25,49,71)(26,50,72)(27,51,73)(28,52,74)(29,53,75)(30,54,76)(31,55,77)(32,56,78), (1,25)(2,18)(3,27)(4,20)(5,29)(6,22)(7,31)(8,24)(9,17)(10,26)(11,19)(12,28)(13,21)(14,30)(15,23)(16,32)(33,59)(34,52)(35,61)(36,54)(37,63)(38,56)(39,49)(40,58)(41,51)(42,60)(43,53)(44,62)(45,55)(46,64)(47,57)(48,50)(65,88)(66,81)(67,90)(68,83)(69,92)(70,85)(71,94)(72,87)(73,96)(74,89)(75,82)(76,91)(77,84)(78,93)(79,86)(80,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,25)(18,32)(19,23)(20,30)(22,28)(24,26)(27,31)(33,45)(34,36)(35,43)(37,41)(38,48)(40,46)(42,44)(49,57)(50,64)(51,55)(52,62)(54,60)(56,58)(59,63)(65,69)(66,76)(68,74)(70,72)(71,79)(73,77)(78,80)(81,83)(82,90)(84,88)(85,95)(87,93)(89,91)(92,96), (1,94,39)(2,95,40)(3,96,41)(4,81,42)(5,82,43)(6,83,44)(7,84,45)(8,85,46)(9,86,47)(10,87,48)(11,88,33)(12,89,34)(13,90,35)(14,91,36)(15,92,37)(16,93,38)(17,57,79)(18,58,80)(19,59,65)(20,60,66)(21,61,67)(22,62,68)(23,63,69)(24,64,70)(25,49,71)(26,50,72)(27,51,73)(28,52,74)(29,53,75)(30,54,76)(31,55,77)(32,56,78), (1,25)(2,18)(3,27)(4,20)(5,29)(6,22)(7,31)(8,24)(9,17)(10,26)(11,19)(12,28)(13,21)(14,30)(15,23)(16,32)(33,59)(34,52)(35,61)(36,54)(37,63)(38,56)(39,49)(40,58)(41,51)(42,60)(43,53)(44,62)(45,55)(46,64)(47,57)(48,50)(65,88)(66,81)(67,90)(68,83)(69,92)(70,85)(71,94)(72,87)(73,96)(74,89)(75,82)(76,91)(77,84)(78,93)(79,86)(80,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,25),(18,32),(19,23),(20,30),(22,28),(24,26),(27,31),(33,45),(34,36),(35,43),(37,41),(38,48),(40,46),(42,44),(49,57),(50,64),(51,55),(52,62),(54,60),(56,58),(59,63),(65,69),(66,76),(68,74),(70,72),(71,79),(73,77),(78,80),(81,83),(82,90),(84,88),(85,95),(87,93),(89,91),(92,96)], [(1,94,39),(2,95,40),(3,96,41),(4,81,42),(5,82,43),(6,83,44),(7,84,45),(8,85,46),(9,86,47),(10,87,48),(11,88,33),(12,89,34),(13,90,35),(14,91,36),(15,92,37),(16,93,38),(17,57,79),(18,58,80),(19,59,65),(20,60,66),(21,61,67),(22,62,68),(23,63,69),(24,64,70),(25,49,71),(26,50,72),(27,51,73),(28,52,74),(29,53,75),(30,54,76),(31,55,77),(32,56,78)], [(1,25),(2,18),(3,27),(4,20),(5,29),(6,22),(7,31),(8,24),(9,17),(10,26),(11,19),(12,28),(13,21),(14,30),(15,23),(16,32),(33,59),(34,52),(35,61),(36,54),(37,63),(38,56),(39,49),(40,58),(41,51),(42,60),(43,53),(44,62),(45,55),(46,64),(47,57),(48,50),(65,88),(66,81),(67,90),(68,83),(69,92),(70,85),(71,94),(72,87),(73,96),(74,89),(75,82),(76,91),(77,84),(78,93),(79,86),(80,95)]])

Matrix representation of SD32:S3 in GL4(F7) generated by

0536
3233
6226
5453
,
5316
1005
0060
6143
,
0052
5303
2503
5512
,
3222
3010
5211
2223
G:=sub<GL(4,GF(7))| [0,3,6,5,5,2,2,4,3,3,2,5,6,3,6,3],[5,1,0,6,3,0,0,1,1,0,6,4,6,5,0,3],[0,5,2,5,0,3,5,5,5,0,0,1,2,3,3,2],[3,3,5,2,2,0,2,2,2,1,1,2,2,0,1,3] >;

SD32:S3 in GAP, Magma, Sage, TeX

{\rm SD}_{32}\rtimes S_3
% in TeX

G:=Group("SD32:S3");
// GroupNames label

G:=SmallGroup(192,474);
// by ID

G=gap.SmallGroup(192,474);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,135,346,185,192,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^16=b^2=c^3=d^2=1,b*a*b=a^7,a*c=c*a,d*a*d=a^9,b*c=c*b,d*b*d=a^8*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of SD32:S3 in TeX

׿
x
:
Z
F
o
wr
Q
<