Copied to
clipboard

G = S3×C4○D8order 192 = 26·3

Direct product of S3 and C4○D8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C4○D8, D814D6, Q1612D6, SD1614D6, D2418C22, C12.14C24, C24.45C23, D12.9C23, Dic6.9C23, Dic1216C22, (S3×D8)⋊8C2, (C2×C8)⋊27D6, C4○D246C2, C4○D410D6, (S3×Q16)⋊8C2, D83S38C2, (C2×C24)⋊4C22, (S3×SD16)⋊7C2, (C4×S3).54D4, D6.66(C2×D4), C4.221(S3×D4), C3⋊C8.24C23, D24⋊C28C2, C22.4(S3×D4), (S3×C8)⋊16C22, D4⋊S312C22, Q8.13D61C2, Q8.7D67C2, C12.380(C2×D4), C4○D125C22, (C3×D8)⋊12C22, C8.42(C22×S3), C4.14(S3×C23), D4.8(C22×S3), (S3×D4).6C22, (C3×D4).8C23, C24⋊C220C22, (C3×Q8).8C23, (S3×Q8).5C22, D42S38C22, (C4×S3).29C23, D4.S311C22, Dic3.71(C2×D4), (C3×Q16)⋊10C22, Q83S38C22, C3⋊Q1610C22, (C22×S3).64D4, C6.115(C22×D4), Q8.18(C22×S3), (C2×C12).531C23, (C2×Dic3).124D4, Q82S311C22, (C3×SD16)⋊15C22, (S3×C2×C8)⋊1C2, C35(C2×C4○D8), C2.88(C2×S3×D4), (S3×C4○D4)⋊1C2, (C3×C4○D8)⋊2C2, (C2×C3⋊C8)⋊37C22, (C2×C6).11(C2×D4), (C3×C4○D4)⋊1C22, (S3×C2×C4).261C22, (C2×C4).618(C22×S3), SmallGroup(192,1326)

Series: Derived Chief Lower central Upper central

C1C12 — S3×C4○D8
C1C3C6C12C4×S3S3×C2×C4S3×C4○D4 — S3×C4○D8
C3C6C12 — S3×C4○D8
C1C4C2×C4C4○D8

Generators and relations for S3×C4○D8
 G = < a,b,c,d,e | a3=b2=c4=e2=1, d4=c2, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d3 >

Subgroups: 712 in 266 conjugacy classes, 101 normal (51 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×C8, C2×C8, D8, D8, SD16, SD16, Q16, Q16, C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, C3⋊C8, C24, Dic6, Dic6, C4×S3, C4×S3, D12, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×S3, C22×S3, C22×C8, C2×D8, C2×SD16, C2×Q16, C4○D8, C4○D8, C2×C4○D4, S3×C8, C24⋊C2, D24, Dic12, C2×C3⋊C8, D4⋊S3, D4.S3, Q82S3, C3⋊Q16, C2×C24, C3×D8, C3×SD16, C3×Q16, S3×C2×C4, S3×C2×C4, C4○D12, C4○D12, S3×D4, S3×D4, D42S3, D42S3, S3×Q8, Q83S3, C3×C4○D4, C2×C4○D8, S3×C2×C8, C4○D24, S3×D8, D83S3, S3×SD16, Q8.7D6, S3×Q16, D24⋊C2, Q8.13D6, C3×C4○D8, S3×C4○D4, S3×C4○D8
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C22×S3, C4○D8, C22×D4, S3×D4, S3×C23, C2×C4○D8, C2×S3×D4, S3×C4○D8

Smallest permutation representation of S3×C4○D8
On 48 points
Generators in S48
(1 40 27)(2 33 28)(3 34 29)(4 35 30)(5 36 31)(6 37 32)(7 38 25)(8 39 26)(9 24 45)(10 17 46)(11 18 47)(12 19 48)(13 20 41)(14 21 42)(15 22 43)(16 23 44)
(9 45)(10 46)(11 47)(12 48)(13 41)(14 42)(15 43)(16 44)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)
(1 19 5 23)(2 20 6 24)(3 21 7 17)(4 22 8 18)(9 28 13 32)(10 29 14 25)(11 30 15 26)(12 31 16 27)(33 41 37 45)(34 42 38 46)(35 43 39 47)(36 44 40 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 8)(3 7)(4 6)(9 15)(10 14)(11 13)(17 21)(18 20)(22 24)(25 29)(26 28)(30 32)(33 39)(34 38)(35 37)(41 47)(42 46)(43 45)

G:=sub<Sym(48)| (1,40,27)(2,33,28)(3,34,29)(4,35,30)(5,36,31)(6,37,32)(7,38,25)(8,39,26)(9,24,45)(10,17,46)(11,18,47)(12,19,48)(13,20,41)(14,21,42)(15,22,43)(16,23,44), (9,45)(10,46)(11,47)(12,48)(13,41)(14,42)(15,43)(16,44)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27)(33,41,37,45)(34,42,38,46)(35,43,39,47)(36,44,40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,21)(18,20)(22,24)(25,29)(26,28)(30,32)(33,39)(34,38)(35,37)(41,47)(42,46)(43,45)>;

G:=Group( (1,40,27)(2,33,28)(3,34,29)(4,35,30)(5,36,31)(6,37,32)(7,38,25)(8,39,26)(9,24,45)(10,17,46)(11,18,47)(12,19,48)(13,20,41)(14,21,42)(15,22,43)(16,23,44), (9,45)(10,46)(11,47)(12,48)(13,41)(14,42)(15,43)(16,44)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,19,5,23)(2,20,6,24)(3,21,7,17)(4,22,8,18)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27)(33,41,37,45)(34,42,38,46)(35,43,39,47)(36,44,40,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,8)(3,7)(4,6)(9,15)(10,14)(11,13)(17,21)(18,20)(22,24)(25,29)(26,28)(30,32)(33,39)(34,38)(35,37)(41,47)(42,46)(43,45) );

G=PermutationGroup([[(1,40,27),(2,33,28),(3,34,29),(4,35,30),(5,36,31),(6,37,32),(7,38,25),(8,39,26),(9,24,45),(10,17,46),(11,18,47),(12,19,48),(13,20,41),(14,21,42),(15,22,43),(16,23,44)], [(9,45),(10,46),(11,47),(12,48),(13,41),(14,42),(15,43),(16,44),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37)], [(1,19,5,23),(2,20,6,24),(3,21,7,17),(4,22,8,18),(9,28,13,32),(10,29,14,25),(11,30,15,26),(12,31,16,27),(33,41,37,45),(34,42,38,46),(35,43,39,47),(36,44,40,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,8),(3,7),(4,6),(9,15),(10,14),(11,13),(17,21),(18,20),(22,24),(25,29),(26,28),(30,32),(33,39),(34,38),(35,37),(41,47),(42,46),(43,45)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D8A8B8C8D8E8F8G8H12A12B12C12D12E24A24B24C24D
order122222222234444444444666688888888121212121224242424
size1123344612122112334461212248822226666224884444

42 irreducible representations

dim1111111111112222222222444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D4D4D6D6D6D6D6C4○D8S3×D4S3×D4S3×C4○D8
kernelS3×C4○D8S3×C2×C8C4○D24S3×D8D83S3S3×SD16Q8.7D6S3×Q16D24⋊C2Q8.13D6C3×C4○D8S3×C4○D4C4○D8C4×S3C2×Dic3C22×S3C2×C8D8SD16Q16C4○D4S3C4C22C1
# reps1111122112121211112128114

Matrix representation of S3×C4○D8 in GL4(𝔽73) generated by

1000
0100
007272
0010
,
72000
07200
0010
007272
,
27000
02700
00720
00072
,
165700
161600
00720
00072
,
1000
07200
0010
0001
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,72,1,0,0,72,0],[72,0,0,0,0,72,0,0,0,0,1,72,0,0,0,72],[27,0,0,0,0,27,0,0,0,0,72,0,0,0,0,72],[16,16,0,0,57,16,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,72,0,0,0,0,1,0,0,0,0,1] >;

S3×C4○D8 in GAP, Magma, Sage, TeX

S_3\times C_4\circ D_8
% in TeX

G:=Group("S3xC4oD8");
// GroupNames label

G:=SmallGroup(192,1326);
// by ID

G=gap.SmallGroup(192,1326);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,570,185,438,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^4=e^2=1,d^4=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d^3>;
// generators/relations

׿
×
𝔽