Copied to
clipboard

G = D83S3order 96 = 25·3

The semidirect product of D8 and S3 acting through Inn(D8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D83S3, Dic3D8, C8.8D6, D4.1D6, D6.1D4, Dic124C2, C24.6C22, C12.3C23, Dic3.12D4, Dic6.1C22, (S3×C8)⋊2C2, (C3×D8)⋊3C2, C32(C4○D8), D4.S32C2, C2.17(S3×D4), C6.29(C2×D4), C3⋊C8.5C22, D42S32C2, C4.3(C22×S3), (C4×S3).8C22, (C3×D4).1C22, SmallGroup(96,119)

Series: Derived Chief Lower central Upper central

C1C12 — D83S3
C1C3C6C12C4×S3D42S3 — D83S3
C3C6C12 — D83S3
C1C2C4D8

Generators and relations for D83S3
 G = < a,b,c,d | a8=b2=c3=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a4b, dcd=c-1 >

Subgroups: 146 in 62 conjugacy classes, 27 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, Dic3, Dic3, C12, D6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, C3⋊C8, C24, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, C4○D8, S3×C8, Dic12, D4.S3, C3×D8, D42S3, D83S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C4○D8, S3×D4, D83S3

Character table of D83S3

 class 12A2B2C2D34A4B4C4D4E6A6B6C8A8B8C8D1224A24B
 size 11446223312122882266444
ρ1111111111111111111111    trivial
ρ211-1-1-111-1-1111-1-111-1-1111    linear of order 2
ρ31111-111-1-1-1-111111-1-1111    linear of order 2
ρ411-11111111-11-11-1-1-1-11-1-1    linear of order 2
ρ5111-111111-1111-1-1-1-1-11-1-1    linear of order 2
ρ611-1-111111-1-11-1-11111111    linear of order 2
ρ7111-1-111-1-11-111-1-1-1111-1-1    linear of order 2
ρ811-11-111-1-1-111-11-1-1111-1-1    linear of order 2
ρ92200-22-222002000000-200    orthogonal lifted from D4
ρ10222-20-120000-1-11-2-200-111    orthogonal lifted from D6
ρ1122-2-20-120000-1112200-1-1-1    orthogonal lifted from D6
ρ12220022-2-2-2002000000-200    orthogonal lifted from D4
ρ1322220-120000-1-1-12200-1-1-1    orthogonal lifted from S3
ρ1422-220-120000-11-1-2-200-111    orthogonal lifted from D6
ρ152-200020-2i2i00-2002-2-2--202-2    complex lifted from C4○D8
ρ162-2000202i-2i00-200-22-2--20-22    complex lifted from C4○D8
ρ172-200020-2i2i00-200-22--2-20-22    complex lifted from C4○D8
ρ182-2000202i-2i00-2002-2--2-202-2    complex lifted from C4○D8
ρ1944000-2-40000-2000000200    orthogonal lifted from S3×D4
ρ204-4000-20000020022-22000-22    symplectic faithful, Schur index 2
ρ214-4000-200000200-22220002-2    symplectic faithful, Schur index 2

Smallest permutation representation of D83S3
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 24)(9 38)(10 37)(11 36)(12 35)(13 34)(14 33)(15 40)(16 39)(25 42)(26 41)(27 48)(28 47)(29 46)(30 45)(31 44)(32 43)
(1 35 46)(2 36 47)(3 37 48)(4 38 41)(5 39 42)(6 40 43)(7 33 44)(8 34 45)(9 26 20)(10 27 21)(11 28 22)(12 29 23)(13 30 24)(14 31 17)(15 32 18)(16 25 19)
(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)(17 21)(18 22)(19 23)(20 24)(33 44)(34 45)(35 46)(36 47)(37 48)(38 41)(39 42)(40 43)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,40)(16,39)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43), (1,35,46)(2,36,47)(3,37,48)(4,38,41)(5,39,42)(6,40,43)(7,33,44)(8,34,45)(9,26,20)(10,27,21)(11,28,22)(12,29,23)(13,30,24)(14,31,17)(15,32,18)(16,25,19), (9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29)(17,21)(18,22)(19,23)(20,24)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,38)(10,37)(11,36)(12,35)(13,34)(14,33)(15,40)(16,39)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43), (1,35,46)(2,36,47)(3,37,48)(4,38,41)(5,39,42)(6,40,43)(7,33,44)(8,34,45)(9,26,20)(10,27,21)(11,28,22)(12,29,23)(13,30,24)(14,31,17)(15,32,18)(16,25,19), (9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29)(17,21)(18,22)(19,23)(20,24)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,24),(9,38),(10,37),(11,36),(12,35),(13,34),(14,33),(15,40),(16,39),(25,42),(26,41),(27,48),(28,47),(29,46),(30,45),(31,44),(32,43)], [(1,35,46),(2,36,47),(3,37,48),(4,38,41),(5,39,42),(6,40,43),(7,33,44),(8,34,45),(9,26,20),(10,27,21),(11,28,22),(12,29,23),(13,30,24),(14,31,17),(15,32,18),(16,25,19)], [(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29),(17,21),(18,22),(19,23),(20,24),(33,44),(34,45),(35,46),(36,47),(37,48),(38,41),(39,42),(40,43)]])

D83S3 is a maximal subgroup of
D8⋊D6  D163S3  SD32⋊S3  D6.2D8  D813D6  S3×C4○D8  D8.10D6  D84D6  D86D6  D83D9  D247S3  D245S3  D12.22D6  D12.8D6  C24.26D6  D407S3  D405S3  D20.24D6  D20.10D6  D83D15
D83S3 is a maximal quotient of
Dic36SD16  D4.2Dic6  Dic6.D4  (C2×C8).200D6  D42S3⋊C4  D6⋊SD16  D4.D12  C241C4⋊C2  Dic35Q16  Dic6.2Q8  C8.6Dic6  C8.27(C4×S3)  D62Q16  C2.D87S3  Dic3×D8  (C6×D8).C2  C24.22D4  D63D8  Dic6⋊D4  D83D9  D247S3  D245S3  D12.22D6  D12.8D6  C24.26D6  D407S3  D405S3  D20.24D6  D20.10D6  D83D15

Matrix representation of D83S3 in GL4(𝔽7) generated by

0255
3565
1155
6143
,
4420
2046
6622
4351
,
0052
5303
2503
5512
,
6053
5522
1461
3514
G:=sub<GL(4,GF(7))| [0,3,1,6,2,5,1,1,5,6,5,4,5,5,5,3],[4,2,6,4,4,0,6,3,2,4,2,5,0,6,2,1],[0,5,2,5,0,3,5,5,5,0,0,1,2,3,3,2],[6,5,1,3,0,5,4,5,5,2,6,1,3,2,1,4] >;

D83S3 in GAP, Magma, Sage, TeX

D_8\rtimes_3S_3
% in TeX

G:=Group("D8:3S3");
// GroupNames label

G:=SmallGroup(96,119);
// by ID

G=gap.SmallGroup(96,119);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,217,362,116,297,159,69,2309]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^4*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of D83S3 in TeX

׿
×
𝔽