Extensions 1→N→G→Q→1 with N=S3×SD16 and Q=C2

Direct product G=N×Q with N=S3×SD16 and Q=C2
dρLabelID
C2×S3×SD1648C2xS3xSD16192,1317

Semidirect products G=N:Q with N=S3×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×SD16)⋊1C2 = S3×C8⋊C22φ: C2/C1C2 ⊆ Out S3×SD16248+(S3xSD16):1C2192,1331
(S3×SD16)⋊2C2 = D86D6φ: C2/C1C2 ⊆ Out S3×SD16488-(S3xSD16):2C2192,1334
(S3×SD16)⋊3C2 = S3×C8.C22φ: C2/C1C2 ⊆ Out S3×SD16488-(S3xSD16):3C2192,1335
(S3×SD16)⋊4C2 = C24.C23φ: C2/C1C2 ⊆ Out S3×SD16488+(S3xSD16):4C2192,1337
(S3×SD16)⋊5C2 = SD1613D6φ: C2/C1C2 ⊆ Out S3×SD16484(S3xSD16):5C2192,1321
(S3×SD16)⋊6C2 = D811D6φ: C2/C1C2 ⊆ Out S3×SD16484(S3xSD16):6C2192,1329
(S3×SD16)⋊7C2 = S3×C4○D8φ: trivial image484(S3xSD16):7C2192,1326


׿
×
𝔽