direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×SD16, C8⋊5D6, Q8⋊2D6, D4.2D6, C24⋊5C22, D6.13D4, C12.4C23, Dic3.4D4, Dic6⋊2C22, D12.2C22, (S3×D4).C2, (S3×C8)⋊4C2, C3⋊C8⋊6C22, (S3×Q8)⋊1C2, C3⋊2(C2×SD16), C24⋊C2⋊5C2, D4.S3⋊3C2, C6.30(C2×D4), C2.18(S3×D4), Q8⋊2S3⋊1C2, (C3×SD16)⋊3C2, C4.4(C22×S3), (C3×Q8)⋊1C22, (C4×S3).9C22, (C3×D4).2C22, SmallGroup(96,120)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×SD16
G = < a,b,c,d | a3=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c3 >
Subgroups: 186 in 68 conjugacy classes, 29 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C8, SD16, SD16, C2×D4, C2×Q8, C3⋊C8, C24, Dic6, Dic6, C4×S3, C4×S3, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, C2×SD16, S3×C8, C24⋊C2, D4.S3, Q8⋊2S3, C3×SD16, S3×D4, S3×Q8, S3×SD16
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C22×S3, C2×SD16, S3×D4, S3×SD16
Character table of S3×SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 24A | 24B | |
size | 1 | 1 | 3 | 3 | 4 | 12 | 2 | 2 | 4 | 6 | 12 | 2 | 8 | 2 | 2 | 6 | 6 | 4 | 8 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 0 | -2 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | 1 | -2 | -2 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | 0 | 0 | -2 | 0 | -1 | 2 | -2 | 0 | 0 | -1 | 1 | 2 | 2 | 0 | 0 | -1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 0 | 0 | 2 | 0 | -1 | 2 | -2 | 0 | 0 | -1 | -1 | -2 | -2 | 0 | 0 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | √-2 | -√-2 | √-2 | -√-2 | 0 | 0 | √-2 | -√-2 | complex lifted from SD16 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | √-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | -√-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | -√-2 | √-2 | -√-2 | √-2 | 0 | 0 | -√-2 | √-2 | complex lifted from SD16 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | complex faithful |
(1 10 21)(2 11 22)(3 12 23)(4 13 24)(5 14 17)(6 15 18)(7 16 19)(8 9 20)
(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(9 15)(11 13)(12 16)(18 20)(19 23)(22 24)
G:=sub<Sym(24)| (1,10,21)(2,11,22)(3,12,23)(4,13,24)(5,14,17)(6,15,18)(7,16,19)(8,9,20), (9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(18,20)(19,23)(22,24)>;
G:=Group( (1,10,21)(2,11,22)(3,12,23)(4,13,24)(5,14,17)(6,15,18)(7,16,19)(8,9,20), (9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,15)(11,13)(12,16)(18,20)(19,23)(22,24) );
G=PermutationGroup([[(1,10,21),(2,11,22),(3,12,23),(4,13,24),(5,14,17),(6,15,18),(7,16,19),(8,9,20)], [(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(9,15),(11,13),(12,16),(18,20),(19,23),(22,24)]])
G:=TransitiveGroup(24,142);
S3×SD16 is a maximal subgroup of
SD16⋊13D6 D8⋊11D6 D8⋊6D6 C24.C23 C24⋊9D6 Dic6⋊D6 D12.9D6 C40⋊14D6 Dic10⋊D6 D15⋊SD16
S3×SD16 is a maximal quotient of
Dic3⋊6SD16 Dic3.SD16 D4⋊Dic6 Dic6⋊2D4 D6⋊5SD16 D6.SD16 D6⋊SD16 Dic3⋊7SD16 Q8⋊2Dic6 Dic3.1Q16 D6.1SD16 Q8⋊3D12 D6⋊2SD16 Dic3⋊SD16 Dic3⋊8SD16 Dic6⋊Q8 C24⋊5Q8 D6.2SD16 D6.4SD16 C8⋊8D12 D12⋊Q8 Dic3⋊3SD16 Dic3⋊5SD16 D6⋊6SD16 D6⋊8SD16 C24⋊14D4 C24⋊15D4 C24⋊9D6 Dic6⋊D6 D12.9D6 C40⋊14D6 Dic10⋊D6 D15⋊SD16
Matrix representation of S3×SD16 ►in GL4(𝔽73) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 |
0 | 0 | 1 | 0 |
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 72 | 72 |
0 | 4 | 0 | 0 |
55 | 12 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 48 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,72,1,0,0,72,0],[72,0,0,0,0,72,0,0,0,0,1,72,0,0,0,72],[0,55,0,0,4,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,48,72,0,0,0,0,1,0,0,0,0,1] >;
S3×SD16 in GAP, Magma, Sage, TeX
S_3\times {\rm SD}_{16}
% in TeX
G:=Group("S3xSD16");
// GroupNames label
G:=SmallGroup(96,120);
// by ID
G=gap.SmallGroup(96,120);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,116,86,297,159,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations
Export