Extensions 1→N→G→Q→1 with N=C4 and Q=C2xC24

Direct product G=NxQ with N=C4 and Q=C2xC24
dρLabelID
C2xC4xC24192C2xC4xC24192,835

Semidirect products G=N:Q with N=C4 and Q=C2xC24
extensionφ:Q→Aut NdρLabelID
C4:1(C2xC24) = D4xC24φ: C2xC24/C24C2 ⊆ Aut C496C4:1(C2xC24)192,867
C4:2(C2xC24) = C6xC4:C8φ: C2xC24/C2xC12C2 ⊆ Aut C4192C4:2(C2xC24)192,855

Non-split extensions G=N.Q with N=C4 and Q=C2xC24
extensionφ:Q→Aut NdρLabelID
C4.1(C2xC24) = C3xD4:C8φ: C2xC24/C24C2 ⊆ Aut C496C4.1(C2xC24)192,131
C4.2(C2xC24) = C3xQ8:C8φ: C2xC24/C24C2 ⊆ Aut C4192C4.2(C2xC24)192,132
C4.3(C2xC24) = C3xD4.C8φ: C2xC24/C24C2 ⊆ Aut C4962C4.3(C2xC24)192,156
C4.4(C2xC24) = Q8xC24φ: C2xC24/C24C2 ⊆ Aut C4192C4.4(C2xC24)192,878
C4.5(C2xC24) = C3xD4oC16φ: C2xC24/C24C2 ⊆ Aut C4962C4.5(C2xC24)192,937
C4.6(C2xC24) = C3xC8:2C8φ: C2xC24/C2xC12C2 ⊆ Aut C4192C4.6(C2xC24)192,140
C4.7(C2xC24) = C3xC8:1C8φ: C2xC24/C2xC12C2 ⊆ Aut C4192C4.7(C2xC24)192,141
C4.8(C2xC24) = C3xC8.C8φ: C2xC24/C2xC12C2 ⊆ Aut C4482C4.8(C2xC24)192,170
C4.9(C2xC24) = C3xC42.12C4φ: C2xC24/C2xC12C2 ⊆ Aut C496C4.9(C2xC24)192,864
C4.10(C2xC24) = C6xM5(2)φ: C2xC24/C2xC12C2 ⊆ Aut C496C4.10(C2xC24)192,936
C4.11(C2xC24) = C3xC8:C8central extension (φ=1)192C4.11(C2xC24)192,128
C4.12(C2xC24) = C3xC16:5C4central extension (φ=1)192C4.12(C2xC24)192,152
C4.13(C2xC24) = C3xM6(2)central extension (φ=1)962C4.13(C2xC24)192,176

׿
x
:
Z
F
o
wr
Q
<