Copied to
clipboard

G = C6×M5(2)  order 192 = 26·3

Direct product of C6 and M5(2)

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C6×M5(2), C4814C22, C23.4C24, C24.82C23, (C2×C16)⋊8C6, C164(C2×C6), (C2×C48)⋊18C2, (C2×C4).6C24, C24.89(C2×C4), C8.20(C2×C12), (C2×C8).14C12, (C2×C12).15C8, C12.50(C2×C8), (C2×C24).33C4, C4.10(C2×C24), (C22×C6).4C8, C22.6(C2×C24), C8.15(C22×C6), C2.6(C22×C24), C6.35(C22×C8), (C22×C8).18C6, C4.35(C22×C12), (C22×C24).34C2, (C22×C4).20C12, (C22×C12).38C4, (C2×C24).448C22, C12.193(C22×C4), (C2×C6).24(C2×C8), (C2×C4).85(C2×C12), (C2×C8).102(C2×C6), (C2×C12).340(C2×C4), SmallGroup(192,936)

Series: Derived Chief Lower central Upper central

C1C2 — C6×M5(2)
C1C2C4C8C24C48C3×M5(2) — C6×M5(2)
C1C2 — C6×M5(2)
C1C2×C24 — C6×M5(2)

Generators and relations for C6×M5(2)
 G = < a,b,c | a6=b16=c2=1, ab=ba, ac=ca, cbc=b9 >

Subgroups: 98 in 90 conjugacy classes, 82 normal (30 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C8, C8, C2×C4, C2×C4, C23, C12, C12, C2×C6, C2×C6, C2×C6, C16, C2×C8, C2×C8, C22×C4, C24, C24, C2×C12, C2×C12, C22×C6, C2×C16, M5(2), C22×C8, C48, C2×C24, C2×C24, C22×C12, C2×M5(2), C2×C48, C3×M5(2), C22×C24, C6×M5(2)
Quotients: C1, C2, C3, C4, C22, C6, C8, C2×C4, C23, C12, C2×C6, C2×C8, C22×C4, C24, C2×C12, C22×C6, M5(2), C22×C8, C2×C24, C22×C12, C2×M5(2), C3×M5(2), C22×C24, C6×M5(2)

Smallest permutation representation of C6×M5(2)
On 96 points
Generators in S96
(1 20 60 47 67 86)(2 21 61 48 68 87)(3 22 62 33 69 88)(4 23 63 34 70 89)(5 24 64 35 71 90)(6 25 49 36 72 91)(7 26 50 37 73 92)(8 27 51 38 74 93)(9 28 52 39 75 94)(10 29 53 40 76 95)(11 30 54 41 77 96)(12 31 55 42 78 81)(13 32 56 43 79 82)(14 17 57 44 80 83)(15 18 58 45 65 84)(16 19 59 46 66 85)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 39)(2 48)(3 41)(4 34)(5 43)(6 36)(7 45)(8 38)(9 47)(10 40)(11 33)(12 42)(13 35)(14 44)(15 37)(16 46)(17 80)(18 73)(19 66)(20 75)(21 68)(22 77)(23 70)(24 79)(25 72)(26 65)(27 74)(28 67)(29 76)(30 69)(31 78)(32 71)(49 91)(50 84)(51 93)(52 86)(53 95)(54 88)(55 81)(56 90)(57 83)(58 92)(59 85)(60 94)(61 87)(62 96)(63 89)(64 82)

G:=sub<Sym(96)| (1,20,60,47,67,86)(2,21,61,48,68,87)(3,22,62,33,69,88)(4,23,63,34,70,89)(5,24,64,35,71,90)(6,25,49,36,72,91)(7,26,50,37,73,92)(8,27,51,38,74,93)(9,28,52,39,75,94)(10,29,53,40,76,95)(11,30,54,41,77,96)(12,31,55,42,78,81)(13,32,56,43,79,82)(14,17,57,44,80,83)(15,18,58,45,65,84)(16,19,59,46,66,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,39)(2,48)(3,41)(4,34)(5,43)(6,36)(7,45)(8,38)(9,47)(10,40)(11,33)(12,42)(13,35)(14,44)(15,37)(16,46)(17,80)(18,73)(19,66)(20,75)(21,68)(22,77)(23,70)(24,79)(25,72)(26,65)(27,74)(28,67)(29,76)(30,69)(31,78)(32,71)(49,91)(50,84)(51,93)(52,86)(53,95)(54,88)(55,81)(56,90)(57,83)(58,92)(59,85)(60,94)(61,87)(62,96)(63,89)(64,82)>;

G:=Group( (1,20,60,47,67,86)(2,21,61,48,68,87)(3,22,62,33,69,88)(4,23,63,34,70,89)(5,24,64,35,71,90)(6,25,49,36,72,91)(7,26,50,37,73,92)(8,27,51,38,74,93)(9,28,52,39,75,94)(10,29,53,40,76,95)(11,30,54,41,77,96)(12,31,55,42,78,81)(13,32,56,43,79,82)(14,17,57,44,80,83)(15,18,58,45,65,84)(16,19,59,46,66,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,39)(2,48)(3,41)(4,34)(5,43)(6,36)(7,45)(8,38)(9,47)(10,40)(11,33)(12,42)(13,35)(14,44)(15,37)(16,46)(17,80)(18,73)(19,66)(20,75)(21,68)(22,77)(23,70)(24,79)(25,72)(26,65)(27,74)(28,67)(29,76)(30,69)(31,78)(32,71)(49,91)(50,84)(51,93)(52,86)(53,95)(54,88)(55,81)(56,90)(57,83)(58,92)(59,85)(60,94)(61,87)(62,96)(63,89)(64,82) );

G=PermutationGroup([[(1,20,60,47,67,86),(2,21,61,48,68,87),(3,22,62,33,69,88),(4,23,63,34,70,89),(5,24,64,35,71,90),(6,25,49,36,72,91),(7,26,50,37,73,92),(8,27,51,38,74,93),(9,28,52,39,75,94),(10,29,53,40,76,95),(11,30,54,41,77,96),(12,31,55,42,78,81),(13,32,56,43,79,82),(14,17,57,44,80,83),(15,18,58,45,65,84),(16,19,59,46,66,85)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,39),(2,48),(3,41),(4,34),(5,43),(6,36),(7,45),(8,38),(9,47),(10,40),(11,33),(12,42),(13,35),(14,44),(15,37),(16,46),(17,80),(18,73),(19,66),(20,75),(21,68),(22,77),(23,70),(24,79),(25,72),(26,65),(27,74),(28,67),(29,76),(30,69),(31,78),(32,71),(49,91),(50,84),(51,93),(52,86),(53,95),(54,88),(55,81),(56,90),(57,83),(58,92),(59,85),(60,94),(61,87),(62,96),(63,89),(64,82)]])

120 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E4F6A···6F6G6H6I6J8A···8H8I8J8K8L12A···12H12I12J12K12L16A···16P24A···24P24Q···24X48A···48AF
order122222334444446···666668···8888812···121212121216···1624···2424···2448···48
size111122111111221···122221···122221···122222···21···12···22···2

120 irreducible representations

dim111111111111111122
type++++
imageC1C2C2C2C3C4C4C6C6C6C8C8C12C12C24C24M5(2)C3×M5(2)
kernelC6×M5(2)C2×C48C3×M5(2)C22×C24C2×M5(2)C2×C24C22×C12C2×C16M5(2)C22×C8C2×C12C22×C6C2×C8C22×C4C2×C4C23C6C2
# reps1241262482124124248816

Matrix representation of C6×M5(2) in GL3(𝔽97) generated by

6200
0360
0036
,
100
001
0500
,
100
010
0096
G:=sub<GL(3,GF(97))| [62,0,0,0,36,0,0,0,36],[1,0,0,0,0,50,0,1,0],[1,0,0,0,1,0,0,0,96] >;

C6×M5(2) in GAP, Magma, Sage, TeX

C_6\times M_5(2)
% in TeX

G:=Group("C6xM5(2)");
// GroupNames label

G:=SmallGroup(192,936);
// by ID

G=gap.SmallGroup(192,936);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,168,1373,102,124]);
// Polycyclic

G:=Group<a,b,c|a^6=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^9>;
// generators/relations

׿
×
𝔽