Extensions 1→N→G→Q→1 with N=S3×Q8 and Q=C4

Direct product G=N×Q with N=S3×Q8 and Q=C4
dρLabelID
C4×S3×Q896C4xS3xQ8192,1130

Semidirect products G=N:Q with N=S3×Q8 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×Q8)⋊1C4 = S3×Q8⋊C4φ: C4/C2C2 ⊆ Out S3×Q896(S3xQ8):1C4192,360
(S3×Q8)⋊2C4 = (S3×Q8)⋊C4φ: C4/C2C2 ⊆ Out S3×Q896(S3xQ8):2C4192,361
(S3×Q8)⋊3C4 = S3×C4≀C2φ: C4/C2C2 ⊆ Out S3×Q8244(S3xQ8):3C4192,379
(S3×Q8)⋊4C4 = C423D6φ: C4/C2C2 ⊆ Out S3×Q8484(S3xQ8):4C4192,380
(S3×Q8)⋊5C4 = C42.125D6φ: C4/C2C2 ⊆ Out S3×Q896(S3xQ8):5C4192,1131

Non-split extensions G=N.Q with N=S3×Q8 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×Q8).C4 = M4(2)⋊28D6φ: C4/C2C2 ⊆ Out S3×Q8484(S3xQ8).C4192,1309
(S3×Q8).2C4 = S3×C8○D4φ: trivial image484(S3xQ8).2C4192,1308

׿
×
𝔽