direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary
Aliases: S3×Q8, C4.6D6, Dic6⋊4C2, C6.7C23, C12.6C22, D6.5C22, Dic3.3C22, C3⋊2(C2×Q8), (C3×Q8)⋊2C2, (C4×S3).1C2, C2.8(C22×S3), SmallGroup(48,40)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×Q8
G = < a,b,c,d | a3=b2=c4=1, d2=c2, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Character table of S3×Q8
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6 | 12A | 12B | 12C | |
size | 1 | 1 | 3 | 3 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 2 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | 0 | -1 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 0 | 0 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ14 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ15 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 19 14)(2 20 15)(3 17 16)(4 18 13)(5 10 21)(6 11 22)(7 12 23)(8 9 24)
(5 10)(6 11)(7 12)(8 9)(13 18)(14 19)(15 20)(16 17)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 24 3 22)(2 23 4 21)(5 20 7 18)(6 19 8 17)(9 16 11 14)(10 15 12 13)
G:=sub<Sym(24)| (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (5,10)(6,11)(7,12)(8,9)(13,18)(14,19)(15,20)(16,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13)>;
G:=Group( (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (5,10)(6,11)(7,12)(8,9)(13,18)(14,19)(15,20)(16,17), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,24,3,22)(2,23,4,21)(5,20,7,18)(6,19,8,17)(9,16,11,14)(10,15,12,13) );
G=PermutationGroup([[(1,19,14),(2,20,15),(3,17,16),(4,18,13),(5,10,21),(6,11,22),(7,12,23),(8,9,24)], [(5,10),(6,11),(7,12),(8,9),(13,18),(14,19),(15,20),(16,17)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,24,3,22),(2,23,4,21),(5,20,7,18),(6,19,8,17),(9,16,11,14),(10,15,12,13)]])
G:=TransitiveGroup(24,26);
S3×Q8 is a maximal subgroup of
D4.D6 Q16⋊S3 Q8.15D6 Q8○D12 Dic3.D6 Q8.6S4 D15⋊Q8 D21⋊Q8 A5⋊Q8 C4.S5
S3×Q8 is a maximal quotient of
Dic6⋊C4 C12⋊Q8 Dic3.Q8 D6⋊Q8 C4.D12 Dic3⋊Q8 D6⋊3Q8 Dic3.D6 D15⋊Q8 D21⋊Q8
Matrix representation of S3×Q8 ►in GL4(𝔽5) generated by
4 | 2 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 0 | 4 | 2 |
0 | 0 | 2 | 0 |
4 | 2 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 3 | 4 |
0 | 0 | 1 | 3 |
0 | 0 | 3 | 0 |
0 | 3 | 0 | 0 |
3 | 4 | 0 | 0 |
0 | 0 | 3 | 4 |
0 | 0 | 4 | 0 |
0 | 1 | 0 | 0 |
1 | 3 | 0 | 0 |
G:=sub<GL(4,GF(5))| [4,2,0,0,2,0,0,0,0,0,4,2,0,0,2,0],[4,0,0,0,2,1,0,0,0,0,1,3,0,0,0,4],[0,0,0,3,0,0,3,4,1,3,0,0,3,0,0,0],[0,0,0,1,0,0,1,3,3,4,0,0,4,0,0,0] >;
S3×Q8 in GAP, Magma, Sage, TeX
S_3\times Q_8
% in TeX
G:=Group("S3xQ8");
// GroupNames label
G:=SmallGroup(48,40);
// by ID
G=gap.SmallGroup(48,40);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,46,97,42,804]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of S3×Q8 in TeX
Character table of S3×Q8 in TeX