# Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C2×C8

Direct product G=N×Q with N=C2 and Q=S3×C2×C8
dρLabelID
S3×C22×C896S3xC2^2xC8192,1295

Non-split extensions G=N.Q with N=C2 and Q=S3×C2×C8
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C2×C8) = S3×C4×C8central extension (φ=1)96C2.1(S3xC2xC8)192,243
C2.2(S3×C2×C8) = S3×C2×C16central extension (φ=1)96C2.2(S3xC2xC8)192,458
C2.3(S3×C2×C8) = Dic3×C2×C8central extension (φ=1)192C2.3(S3xC2xC8)192,657
C2.4(S3×C2×C8) = C8×Dic6central stem extension (φ=1)192C2.4(S3xC2xC8)192,237
C2.5(S3×C2×C8) = C42.282D6central stem extension (φ=1)96C2.5(S3xC2xC8)192,244
C2.6(S3×C2×C8) = C8×D12central stem extension (φ=1)96C2.6(S3xC2xC8)192,245
C2.7(S3×C2×C8) = Dic3.5M4(2)central stem extension (φ=1)96C2.7(S3xC2xC8)192,277
C2.8(S3×C2×C8) = S3×C22⋊C8central stem extension (φ=1)48C2.8(S3xC2xC8)192,283
C2.9(S3×C2×C8) = C3⋊D4⋊C8central stem extension (φ=1)96C2.9(S3xC2xC8)192,284
C2.10(S3×C2×C8) = Dic6⋊C8central stem extension (φ=1)192C2.10(S3xC2xC8)192,389
C2.11(S3×C2×C8) = S3×C4⋊C8central stem extension (φ=1)96C2.11(S3xC2xC8)192,391
C2.12(S3×C2×C8) = C42.200D6central stem extension (φ=1)96C2.12(S3xC2xC8)192,392
C2.13(S3×C2×C8) = D12⋊C8central stem extension (φ=1)96C2.13(S3xC2xC8)192,393
C2.14(S3×C2×C8) = C2×D6.C8central stem extension (φ=1)96C2.14(S3xC2xC8)192,459
C2.15(S3×C2×C8) = D12.4C8central stem extension (φ=1)962C2.15(S3xC2xC8)192,460
C2.16(S3×C2×C8) = S3×M5(2)central stem extension (φ=1)484C2.16(S3xC2xC8)192,465
C2.17(S3×C2×C8) = C16.12D6central stem extension (φ=1)964C2.17(S3xC2xC8)192,466
C2.18(S3×C2×C8) = C2×Dic3⋊C8central stem extension (φ=1)192C2.18(S3xC2xC8)192,658
C2.19(S3×C2×C8) = C2×D6⋊C8central stem extension (φ=1)96C2.19(S3xC2xC8)192,667
C2.20(S3×C2×C8) = C8×C3⋊D4central stem extension (φ=1)96C2.20(S3xC2xC8)192,668

׿
×
𝔽