Copied to
clipboard

G = C8×D12order 192 = 26·3

Direct product of C8 and D12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8×D12, C2425D4, C42.256D6, C31(C8×D4), C42(S3×C8), (C4×C8)⋊3S3, C124(C2×C8), D61(C2×C8), C6.4(C4×D4), (C4×C24)⋊23C2, D6⋊C841C2, C2.1(C4×D12), D6⋊C4.18C4, C12⋊C836C2, C6.3(C8○D4), C4.74(C2×D12), (C2×C8).339D6, C6.4(C22×C8), (C4×D12).29C2, (C2×D12).18C4, C2.2(C8○D12), C12.294(C2×D4), C4⋊Dic3.23C4, C4.125(C4○D12), C12.241(C4○D4), (C4×C12).323C22, (C2×C24).342C22, (C2×C12).804C23, C2.6(S3×C2×C8), (S3×C2×C8)⋊11C2, C22.36(S3×C2×C4), (C2×C4).103(C4×S3), (C2×C12).220(C2×C4), (C2×C3⋊C8).290C22, (S3×C2×C4).266C22, (C2×C6).59(C22×C4), (C22×S3).31(C2×C4), (C2×C4).746(C22×S3), (C2×Dic3).46(C2×C4), SmallGroup(192,245)

Series: Derived Chief Lower central Upper central

C1C6 — C8×D12
C1C3C6C12C2×C12S3×C2×C4C4×D12 — C8×D12
C3C6 — C8×D12
C1C2×C8C4×C8

Generators and relations for C8×D12
 G = < a,b,c | a8=b12=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 312 in 134 conjugacy classes, 63 normal (33 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, C12, D6, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C3⋊C8, C24, C24, C4×S3, D12, C2×Dic3, C2×C12, C22×S3, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C22×C8, S3×C8, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, C4×C12, C2×C24, S3×C2×C4, C2×D12, C8×D4, C12⋊C8, D6⋊C8, C4×C24, C4×D12, S3×C2×C8, C8×D12
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, C23, D6, C2×C8, C22×C4, C2×D4, C4○D4, C4×S3, D12, C22×S3, C4×D4, C22×C8, C8○D4, S3×C8, S3×C2×C4, C2×D12, C4○D12, C8×D4, C4×D12, S3×C2×C8, C8○D12, C8×D12

Smallest permutation representation of C8×D12
On 96 points
Generators in S96
(1 82 67 58 23 34 42 93)(2 83 68 59 24 35 43 94)(3 84 69 60 13 36 44 95)(4 73 70 49 14 25 45 96)(5 74 71 50 15 26 46 85)(6 75 72 51 16 27 47 86)(7 76 61 52 17 28 48 87)(8 77 62 53 18 29 37 88)(9 78 63 54 19 30 38 89)(10 79 64 55 20 31 39 90)(11 80 65 56 21 32 40 91)(12 81 66 57 22 33 41 92)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 23)(14 22)(15 21)(16 20)(17 19)(25 33)(26 32)(27 31)(28 30)(34 36)(38 48)(39 47)(40 46)(41 45)(42 44)(49 57)(50 56)(51 55)(52 54)(58 60)(61 63)(64 72)(65 71)(66 70)(67 69)(73 81)(74 80)(75 79)(76 78)(82 84)(85 91)(86 90)(87 89)(92 96)(93 95)

G:=sub<Sym(96)| (1,82,67,58,23,34,42,93)(2,83,68,59,24,35,43,94)(3,84,69,60,13,36,44,95)(4,73,70,49,14,25,45,96)(5,74,71,50,15,26,46,85)(6,75,72,51,16,27,47,86)(7,76,61,52,17,28,48,87)(8,77,62,53,18,29,37,88)(9,78,63,54,19,30,38,89)(10,79,64,55,20,31,39,90)(11,80,65,56,21,32,40,91)(12,81,66,57,22,33,41,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,23)(14,22)(15,21)(16,20)(17,19)(25,33)(26,32)(27,31)(28,30)(34,36)(38,48)(39,47)(40,46)(41,45)(42,44)(49,57)(50,56)(51,55)(52,54)(58,60)(61,63)(64,72)(65,71)(66,70)(67,69)(73,81)(74,80)(75,79)(76,78)(82,84)(85,91)(86,90)(87,89)(92,96)(93,95)>;

G:=Group( (1,82,67,58,23,34,42,93)(2,83,68,59,24,35,43,94)(3,84,69,60,13,36,44,95)(4,73,70,49,14,25,45,96)(5,74,71,50,15,26,46,85)(6,75,72,51,16,27,47,86)(7,76,61,52,17,28,48,87)(8,77,62,53,18,29,37,88)(9,78,63,54,19,30,38,89)(10,79,64,55,20,31,39,90)(11,80,65,56,21,32,40,91)(12,81,66,57,22,33,41,92), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,23)(14,22)(15,21)(16,20)(17,19)(25,33)(26,32)(27,31)(28,30)(34,36)(38,48)(39,47)(40,46)(41,45)(42,44)(49,57)(50,56)(51,55)(52,54)(58,60)(61,63)(64,72)(65,71)(66,70)(67,69)(73,81)(74,80)(75,79)(76,78)(82,84)(85,91)(86,90)(87,89)(92,96)(93,95) );

G=PermutationGroup([[(1,82,67,58,23,34,42,93),(2,83,68,59,24,35,43,94),(3,84,69,60,13,36,44,95),(4,73,70,49,14,25,45,96),(5,74,71,50,15,26,46,85),(6,75,72,51,16,27,47,86),(7,76,61,52,17,28,48,87),(8,77,62,53,18,29,37,88),(9,78,63,54,19,30,38,89),(10,79,64,55,20,31,39,90),(11,80,65,56,21,32,40,91),(12,81,66,57,22,33,41,92)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,23),(14,22),(15,21),(16,20),(17,19),(25,33),(26,32),(27,31),(28,30),(34,36),(38,48),(39,47),(40,46),(41,45),(42,44),(49,57),(50,56),(51,55),(52,54),(58,60),(61,63),(64,72),(65,71),(66,70),(67,69),(73,81),(74,80),(75,79),(76,78),(82,84),(85,91),(86,90),(87,89),(92,96),(93,95)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C8A···8H8I8J8K8L8M···8T12A···12L24A···24P
order1222222234444444444446668···888888···812···1224···24
size1111666621111222266662221···122226···62···22···2

72 irreducible representations

dim111111111122222222222
type+++++++++++
imageC1C2C2C2C2C2C4C4C4C8S3D4D6D6C4○D4D12C4×S3C8○D4S3×C8C4○D12C8○D12
kernelC8×D12C12⋊C8D6⋊C8C4×C24C4×D12S3×C2×C8C4⋊Dic3D6⋊C4C2×D12D12C4×C8C24C42C2×C8C12C8C2×C4C6C4C4C2
# reps1121122421612122444848

Matrix representation of C8×D12 in GL3(𝔽73) generated by

1000
0630
0063
,
7200
0597
06666
,
7200
010
0172
G:=sub<GL(3,GF(73))| [10,0,0,0,63,0,0,0,63],[72,0,0,0,59,66,0,7,66],[72,0,0,0,1,1,0,0,72] >;

C8×D12 in GAP, Magma, Sage, TeX

C_8\times D_{12}
% in TeX

G:=Group("C8xD12");
// GroupNames label

G:=SmallGroup(192,245);
// by ID

G=gap.SmallGroup(192,245);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,58,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=b^12=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽