Copied to
clipboard

G = C2×D6.C8order 192 = 26·3

Direct product of C2 and D6.C8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D6.C8, C169D6, C61M5(2), C4813C22, C24.72C23, (C2×C16)⋊8S3, (C2×C48)⋊16C2, (S3×C8).3C4, (C4×S3).3C8, C8.44(C4×S3), C4.24(S3×C8), D6.5(C2×C8), C31(C2×M5(2)), C3⋊C1610C22, C24.65(C2×C4), C12.29(C2×C8), (C2×C8).342D6, (C22×S3).3C8, C8.58(C22×S3), C6.13(C22×C8), C22.14(S3×C8), Dic3.6(C2×C8), (C2×Dic3).5C8, (S3×C8).16C22, C12.129(C22×C4), (C2×C24).428C22, C2.14(S3×C2×C8), (C2×C3⋊C16)⋊11C2, (C2×C3⋊C8).15C4, C3⋊C8.21(C2×C4), (S3×C2×C8).15C2, (S3×C2×C4).20C4, C4.103(S3×C2×C4), (C2×C6).15(C2×C8), (C4×S3).33(C2×C4), (C2×C4).176(C4×S3), (C2×C12).249(C2×C4), SmallGroup(192,459)

Series: Derived Chief Lower central Upper central

C1C6 — C2×D6.C8
C1C3C6C12C24S3×C8S3×C2×C8 — C2×D6.C8
C3C6 — C2×D6.C8
C1C2×C8C2×C16

Generators and relations for C2×D6.C8
 G = < a,b,c,d | a2=b6=c2=1, d8=b3, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b3c >

Subgroups: 168 in 90 conjugacy classes, 55 normal (27 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, C23, Dic3, C12, D6, D6, C2×C6, C16, C16, C2×C8, C2×C8, C22×C4, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C2×C16, C2×C16, M5(2), C22×C8, C3⋊C16, C48, S3×C8, C2×C3⋊C8, C2×C24, S3×C2×C4, C2×M5(2), D6.C8, C2×C3⋊C16, C2×C48, S3×C2×C8, C2×D6.C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, C23, D6, C2×C8, C22×C4, C4×S3, C22×S3, M5(2), C22×C8, S3×C8, S3×C2×C4, C2×M5(2), D6.C8, S3×C2×C8, C2×D6.C8

Smallest permutation representation of C2×D6.C8
On 96 points
Generators in S96
(1 38)(2 39)(3 40)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 33)(13 34)(14 35)(15 36)(16 37)(17 82)(18 83)(19 84)(20 85)(21 86)(22 87)(23 88)(24 89)(25 90)(26 91)(27 92)(28 93)(29 94)(30 95)(31 96)(32 81)(49 72)(50 73)(51 74)(52 75)(53 76)(54 77)(55 78)(56 79)(57 80)(58 65)(59 66)(60 67)(61 68)(62 69)(63 70)(64 71)
(1 29 67 9 21 75)(2 30 68 10 22 76)(3 31 69 11 23 77)(4 32 70 12 24 78)(5 17 71 13 25 79)(6 18 72 14 26 80)(7 19 73 15 27 65)(8 20 74 16 28 66)(33 89 55 41 81 63)(34 90 56 42 82 64)(35 91 57 43 83 49)(36 92 58 44 84 50)(37 93 59 45 85 51)(38 94 60 46 86 52)(39 95 61 47 87 53)(40 96 62 48 88 54)
(1 75)(2 68)(3 77)(4 70)(5 79)(6 72)(7 65)(8 74)(9 67)(10 76)(11 69)(12 78)(13 71)(14 80)(15 73)(16 66)(17 25)(19 27)(21 29)(23 31)(33 55)(34 64)(35 57)(36 50)(37 59)(38 52)(39 61)(40 54)(41 63)(42 56)(43 49)(44 58)(45 51)(46 60)(47 53)(48 62)(82 90)(84 92)(86 94)(88 96)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,33)(13,34)(14,35)(15,36)(16,37)(17,82)(18,83)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,81)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(64,71), (1,29,67,9,21,75)(2,30,68,10,22,76)(3,31,69,11,23,77)(4,32,70,12,24,78)(5,17,71,13,25,79)(6,18,72,14,26,80)(7,19,73,15,27,65)(8,20,74,16,28,66)(33,89,55,41,81,63)(34,90,56,42,82,64)(35,91,57,43,83,49)(36,92,58,44,84,50)(37,93,59,45,85,51)(38,94,60,46,86,52)(39,95,61,47,87,53)(40,96,62,48,88,54), (1,75)(2,68)(3,77)(4,70)(5,79)(6,72)(7,65)(8,74)(9,67)(10,76)(11,69)(12,78)(13,71)(14,80)(15,73)(16,66)(17,25)(19,27)(21,29)(23,31)(33,55)(34,64)(35,57)(36,50)(37,59)(38,52)(39,61)(40,54)(41,63)(42,56)(43,49)(44,58)(45,51)(46,60)(47,53)(48,62)(82,90)(84,92)(86,94)(88,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;

G:=Group( (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,33)(13,34)(14,35)(15,36)(16,37)(17,82)(18,83)(19,84)(20,85)(21,86)(22,87)(23,88)(24,89)(25,90)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,81)(49,72)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,65)(59,66)(60,67)(61,68)(62,69)(63,70)(64,71), (1,29,67,9,21,75)(2,30,68,10,22,76)(3,31,69,11,23,77)(4,32,70,12,24,78)(5,17,71,13,25,79)(6,18,72,14,26,80)(7,19,73,15,27,65)(8,20,74,16,28,66)(33,89,55,41,81,63)(34,90,56,42,82,64)(35,91,57,43,83,49)(36,92,58,44,84,50)(37,93,59,45,85,51)(38,94,60,46,86,52)(39,95,61,47,87,53)(40,96,62,48,88,54), (1,75)(2,68)(3,77)(4,70)(5,79)(6,72)(7,65)(8,74)(9,67)(10,76)(11,69)(12,78)(13,71)(14,80)(15,73)(16,66)(17,25)(19,27)(21,29)(23,31)(33,55)(34,64)(35,57)(36,50)(37,59)(38,52)(39,61)(40,54)(41,63)(42,56)(43,49)(44,58)(45,51)(46,60)(47,53)(48,62)(82,90)(84,92)(86,94)(88,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,38),(2,39),(3,40),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,33),(13,34),(14,35),(15,36),(16,37),(17,82),(18,83),(19,84),(20,85),(21,86),(22,87),(23,88),(24,89),(25,90),(26,91),(27,92),(28,93),(29,94),(30,95),(31,96),(32,81),(49,72),(50,73),(51,74),(52,75),(53,76),(54,77),(55,78),(56,79),(57,80),(58,65),(59,66),(60,67),(61,68),(62,69),(63,70),(64,71)], [(1,29,67,9,21,75),(2,30,68,10,22,76),(3,31,69,11,23,77),(4,32,70,12,24,78),(5,17,71,13,25,79),(6,18,72,14,26,80),(7,19,73,15,27,65),(8,20,74,16,28,66),(33,89,55,41,81,63),(34,90,56,42,82,64),(35,91,57,43,83,49),(36,92,58,44,84,50),(37,93,59,45,85,51),(38,94,60,46,86,52),(39,95,61,47,87,53),(40,96,62,48,88,54)], [(1,75),(2,68),(3,77),(4,70),(5,79),(6,72),(7,65),(8,74),(9,67),(10,76),(11,69),(12,78),(13,71),(14,80),(15,73),(16,66),(17,25),(19,27),(21,29),(23,31),(33,55),(34,64),(35,57),(36,50),(37,59),(38,52),(39,61),(40,54),(41,63),(42,56),(43,49),(44,58),(45,51),(46,60),(47,53),(48,62),(82,90),(84,92),(86,94),(88,96)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])

72 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A6B6C8A···8H8I8J8K8L12A12B12C12D16A···16H16I···16P24A···24H48A···48P
order12222234444446668···888881212121216···1616···1624···2448···48
size11116621111662221···1666622222···26···62···22···2

72 irreducible representations

dim11111111111222222222
type++++++++
imageC1C2C2C2C2C4C4C4C8C8C8S3D6D6C4×S3C4×S3M5(2)S3×C8S3×C8D6.C8
kernelC2×D6.C8D6.C8C2×C3⋊C16C2×C48S3×C2×C8S3×C8C2×C3⋊C8S3×C2×C4C4×S3C2×Dic3C22×S3C2×C16C16C2×C8C8C2×C4C6C4C22C2
# reps141114228441212284416

Matrix representation of C2×D6.C8 in GL4(𝔽97) generated by

1000
0100
00960
00096
,
96000
09600
00196
0010
,
96000
0100
0010
00196
,
0100
33000
004017
008057
G:=sub<GL(4,GF(97))| [1,0,0,0,0,1,0,0,0,0,96,0,0,0,0,96],[96,0,0,0,0,96,0,0,0,0,1,1,0,0,96,0],[96,0,0,0,0,1,0,0,0,0,1,1,0,0,0,96],[0,33,0,0,1,0,0,0,0,0,40,80,0,0,17,57] >;

C2×D6.C8 in GAP, Magma, Sage, TeX

C_2\times D_6.C_8
% in TeX

G:=Group("C2xD6.C8");
// GroupNames label

G:=SmallGroup(192,459);
// by ID

G=gap.SmallGroup(192,459);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,58,80,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^6=c^2=1,d^8=b^3,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^3*c>;
// generators/relations

׿
×
𝔽