Copied to
clipboard

G = S3×M5(2)  order 192 = 26·3

Direct product of S3 and M5(2)

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×M5(2), C166D6, C487C22, C24.74C23, (S3×C16)⋊7C2, (C4×S3).1C8, (S3×C8).4C4, C8.35(C4×S3), C4.15(S3×C8), D6.C85C2, D6.6(C2×C8), C32(C2×M5(2)), C3⋊C1611C22, C12.12(C2×C8), C24.44(C2×C4), (C2×C8).272D6, C22.7(S3×C8), (C3×M5(2))⋊5C2, (C22×S3).4C8, C8.60(C22×S3), C6.15(C22×C8), Dic3.7(C2×C8), (C2×Dic3).6C8, C12.C813C2, (S3×C8).18C22, (C2×C24).273C22, C12.131(C22×C4), (C2×C3⋊C8).8C4, (S3×C2×C4).8C4, C2.16(S3×C2×C8), C3⋊C8.22(C2×C4), (S3×C2×C8).18C2, C4.105(S3×C2×C4), (C2×C6).5(C2×C8), (C4×S3).34(C2×C4), (C2×C12).72(C2×C4), (C2×C4).148(C4×S3), SmallGroup(192,465)

Series: Derived Chief Lower central Upper central

C1C6 — S3×M5(2)
C1C3C6C12C24S3×C8S3×C2×C8 — S3×M5(2)
C3C6 — S3×M5(2)
C1C8M5(2)

Generators and relations for S3×M5(2)
 G = < a,b,c,d | a3=b2=c16=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c9 >

Subgroups: 168 in 90 conjugacy classes, 53 normal (41 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C8, C8, C2×C4, C2×C4, C23, Dic3, C12, D6, D6, C2×C6, C16, C16, C2×C8, C2×C8, C22×C4, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C2×C16, M5(2), M5(2), C22×C8, C3⋊C16, C48, S3×C8, C2×C3⋊C8, C2×C24, S3×C2×C4, C2×M5(2), S3×C16, D6.C8, C12.C8, C3×M5(2), S3×C2×C8, S3×M5(2)
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, C23, D6, C2×C8, C22×C4, C4×S3, C22×S3, M5(2), C22×C8, S3×C8, S3×C2×C4, C2×M5(2), S3×C2×C8, S3×M5(2)

Smallest permutation representation of S3×M5(2)
On 48 points
Generators in S48
(1 41 30)(2 42 31)(3 43 32)(4 44 17)(5 45 18)(6 46 19)(7 47 20)(8 48 21)(9 33 22)(10 34 23)(11 35 24)(12 36 25)(13 37 26)(14 38 27)(15 39 28)(16 40 29)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 36)(18 37)(19 38)(20 39)(21 40)(22 41)(23 42)(24 43)(25 44)(26 45)(27 46)(28 47)(29 48)(30 33)(31 34)(32 35)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 10)(4 12)(6 14)(8 16)(17 25)(19 27)(21 29)(23 31)(34 42)(36 44)(38 46)(40 48)

G:=sub<Sym(48)| (1,41,30)(2,42,31)(3,43,32)(4,44,17)(5,45,18)(6,46,19)(7,47,20)(8,48,21)(9,33,22)(10,34,23)(11,35,24)(12,36,25)(13,37,26)(14,38,27)(15,39,28)(16,40,29), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,33)(31,34)(32,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48)>;

G:=Group( (1,41,30)(2,42,31)(3,43,32)(4,44,17)(5,45,18)(6,46,19)(7,47,20)(8,48,21)(9,33,22)(10,34,23)(11,35,24)(12,36,25)(13,37,26)(14,38,27)(15,39,28)(16,40,29), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,33)(31,34)(32,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,10)(4,12)(6,14)(8,16)(17,25)(19,27)(21,29)(23,31)(34,42)(36,44)(38,46)(40,48) );

G=PermutationGroup([[(1,41,30),(2,42,31),(3,43,32),(4,44,17),(5,45,18),(6,46,19),(7,47,20),(8,48,21),(9,33,22),(10,34,23),(11,35,24),(12,36,25),(13,37,26),(14,38,27),(15,39,28),(16,40,29)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,36),(18,37),(19,38),(20,39),(21,40),(22,41),(23,42),(24,43),(25,44),(26,45),(27,46),(28,47),(29,48),(30,33),(31,34),(32,35)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,10),(4,12),(6,14),(8,16),(17,25),(19,27),(21,29),(23,31),(34,42),(36,44),(38,46),(40,48)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A6B8A8B8C8D8E8F8G8H8I8J8K8L12A12B12C16A···16H16I···16P24A24B24C24D24E24F48A···48H
order12222234444446688888888888812121216···1616···1624242424242448···48
size1123362112336241111223333662242···26···62222444···4

60 irreducible representations

dim111111111111222222224
type+++++++++
imageC1C2C2C2C2C2C4C4C4C8C8C8S3D6D6C4×S3C4×S3M5(2)S3×C8S3×C8S3×M5(2)
kernelS3×M5(2)S3×C16D6.C8C12.C8C3×M5(2)S3×C2×C8S3×C8C2×C3⋊C8S3×C2×C4C4×S3C2×Dic3C22×S3M5(2)C16C2×C8C8C2×C4S3C4C22C1
# reps122111422844121228444

Matrix representation of S3×M5(2) in GL4(𝔽97) generated by

09600
19600
0010
0001
,
19600
09600
00960
00096
,
64000
06400
00473
002450
,
1000
0100
0010
00196
G:=sub<GL(4,GF(97))| [0,1,0,0,96,96,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,96,96,0,0,0,0,96,0,0,0,0,96],[64,0,0,0,0,64,0,0,0,0,47,24,0,0,3,50],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,96] >;

S3×M5(2) in GAP, Magma, Sage, TeX

S_3\times M_5(2)
% in TeX

G:=Group("S3xM5(2)");
// GroupNames label

G:=SmallGroup(192,465);
// by ID

G=gap.SmallGroup(192,465);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,58,80,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^16=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^9>;
// generators/relations

׿
×
𝔽