Extensions 1→N→G→Q→1 with N=C4 and Q=Dic12

Direct product G=N×Q with N=C4 and Q=Dic12
dρLabelID
C4×Dic12192C4xDic12192,257

Semidirect products G=N:Q with N=C4 and Q=Dic12
extensionφ:Q→Aut NdρLabelID
C41Dic12 = C124Q16φ: Dic12/C24C2 ⊆ Aut C4192C4:1Dic12192,258
C42Dic12 = C4⋊Dic12φ: Dic12/Dic6C2 ⊆ Aut C4192C4:2Dic12192,408

Non-split extensions G=N.Q with N=C4 and Q=Dic12
extensionφ:Q→Aut NdρLabelID
C4.1Dic12 = C485C4φ: Dic12/C24C2 ⊆ Aut C4192C4.1Dic12192,63
C4.2Dic12 = C486C4φ: Dic12/C24C2 ⊆ Aut C4192C4.2Dic12192,64
C4.3Dic12 = C12.14Q16φ: Dic12/C24C2 ⊆ Aut C4192C4.3Dic12192,240
C4.4Dic12 = C248Q8φ: Dic12/C24C2 ⊆ Aut C4192C4.4Dic12192,241
C4.5Dic12 = C4.Dic12φ: Dic12/Dic6C2 ⊆ Aut C4192C4.5Dic12192,40
C4.6Dic12 = C12.47D8φ: Dic12/Dic6C2 ⊆ Aut C4192C4.6Dic12192,41
C4.7Dic12 = Dic63Q8φ: Dic12/Dic6C2 ⊆ Aut C4192C4.7Dic12192,409
C4.8Dic12 = C4.8Dic12central extension (φ=1)192C4.8Dic12192,15
C4.9Dic12 = C241C8central extension (φ=1)192C4.9Dic12192,17

׿
×
𝔽