Copied to
clipboard

G = Dic12order 48 = 24·3

Dicyclic group

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: Dic12, C8.S3, C31Q16, C6.3D4, C24.1C2, C4.10D6, C2.5D12, Dic6.1C2, C12.10C22, SmallGroup(48,8)

Series: Derived Chief Lower central Upper central

C1C12 — Dic12
C1C3C6C12Dic6 — Dic12
C3C6C12 — Dic12
C1C2C4C8

Generators and relations for Dic12
 G = < a,b | a24=1, b2=a12, bab-1=a-1 >

6C4
6C4
3Q8
3Q8
2Dic3
2Dic3
3Q16

Character table of Dic12

 class 1234A4B4C68A8B12A12B24A24B24C24D
 size 11221212222222222
ρ1111111111111111    trivial
ρ211111-11-1-111-1-1-1-1    linear of order 2
ρ31111-1-1111111111    linear of order 2
ρ41111-111-1-111-1-1-1-1    linear of order 2
ρ5222-200200-2-20000    orthogonal lifted from D4
ρ622-1200-122-1-1-1-1-1-1    orthogonal lifted from S3
ρ722-1200-1-2-2-1-11111    orthogonal lifted from D6
ρ822-1-200-10011-333-3    orthogonal lifted from D12
ρ922-1-200-100113-3-33    orthogonal lifted from D12
ρ102-22000-2-220022-2-2    symplectic lifted from Q16, Schur index 2
ρ112-22000-22-200-2-222    symplectic lifted from Q16, Schur index 2
ρ122-2-100012-23-3ζ83ζ38ζ38ζ87ζ38785ζ3ζ87ζ3285ζ3285ζ83ζ32838ζ32    symplectic faithful, Schur index 2
ρ132-2-10001-223-3ζ83ζ32838ζ32ζ87ζ3285ζ3285ζ87ζ38785ζ3ζ83ζ38ζ38    symplectic faithful, Schur index 2
ρ142-2-10001-22-33ζ87ζ3285ζ3285ζ83ζ32838ζ32ζ83ζ38ζ38ζ87ζ38785ζ3    symplectic faithful, Schur index 2
ρ152-2-100012-2-33ζ87ζ38785ζ3ζ83ζ38ζ38ζ83ζ32838ζ32ζ87ζ3285ζ3285    symplectic faithful, Schur index 2

Smallest permutation representation of Dic12
Regular action on 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 33 13 45)(2 32 14 44)(3 31 15 43)(4 30 16 42)(5 29 17 41)(6 28 18 40)(7 27 19 39)(8 26 20 38)(9 25 21 37)(10 48 22 36)(11 47 23 35)(12 46 24 34)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33,13,45)(2,32,14,44)(3,31,15,43)(4,30,16,42)(5,29,17,41)(6,28,18,40)(7,27,19,39)(8,26,20,38)(9,25,21,37)(10,48,22,36)(11,47,23,35)(12,46,24,34)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,33,13,45)(2,32,14,44)(3,31,15,43)(4,30,16,42)(5,29,17,41)(6,28,18,40)(7,27,19,39)(8,26,20,38)(9,25,21,37)(10,48,22,36)(11,47,23,35)(12,46,24,34) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,33,13,45),(2,32,14,44),(3,31,15,43),(4,30,16,42),(5,29,17,41),(6,28,18,40),(7,27,19,39),(8,26,20,38),(9,25,21,37),(10,48,22,36),(11,47,23,35),(12,46,24,34)])

Matrix representation of Dic12 in GL2(𝔽23) generated by

917
1722
,
022
10
G:=sub<GL(2,GF(23))| [9,17,17,22],[0,1,22,0] >;

Dic12 in GAP, Magma, Sage, TeX

{\rm Dic}_{12}
% in TeX

G:=Group("Dic12");
// GroupNames label

G:=SmallGroup(48,8);
// by ID

G=gap.SmallGroup(48,8);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-3,40,61,66,182,42,804]);
// Polycyclic

G:=Group<a,b|a^24=1,b^2=a^12,b*a*b^-1=a^-1>;
// generators/relations

׿
×
𝔽