Extensions 1→N→G→Q→1 with N=C4×He3 and Q=C2

Direct product G=N×Q with N=C4×He3 and Q=C2
dρLabelID
C2×C4×He372C2xC4xHe3216,74

Semidirect products G=N:Q with N=C4×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×He3)⋊1C2 = He34D4φ: C2/C1C2 ⊆ Out C4×He3366+(C4xHe3):1C2216,51
(C4×He3)⋊2C2 = He35D4φ: C2/C1C2 ⊆ Out C4×He3366(C4xHe3):2C2216,68
(C4×He3)⋊3C2 = C4×C32⋊C6φ: C2/C1C2 ⊆ Out C4×He3366(C4xHe3):3C2216,50
(C4×He3)⋊4C2 = C4×He3⋊C2φ: C2/C1C2 ⊆ Out C4×He3363(C4xHe3):4C2216,67
(C4×He3)⋊5C2 = D4×He3φ: C2/C1C2 ⊆ Out C4×He3366(C4xHe3):5C2216,77

Non-split extensions G=N.Q with N=C4×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×He3).1C2 = He33Q8φ: C2/C1C2 ⊆ Out C4×He3726-(C4xHe3).1C2216,49
(C4×He3).2C2 = He34Q8φ: C2/C1C2 ⊆ Out C4×He3726(C4xHe3).2C2216,66
(C4×He3).3C2 = He33C8φ: C2/C1C2 ⊆ Out C4×He3726(C4xHe3).3C2216,14
(C4×He3).4C2 = He34C8φ: C2/C1C2 ⊆ Out C4×He3723(C4xHe3).4C2216,17
(C4×He3).5C2 = Q8×He3φ: C2/C1C2 ⊆ Out C4×He3726(C4xHe3).5C2216,80
(C4×He3).6C2 = C8×He3φ: trivial image723(C4xHe3).6C2216,19

׿
×
𝔽