Copied to
clipboard

G = He34Q8order 216 = 23·33

2nd semidirect product of He3 and Q8 acting via Q8/C4=C2

non-abelian, supersoluble, monomial

Aliases: He34Q8, C324Dic6, (C3×C12).4S3, (C3×C6).16D6, C12.7(C3⋊S3), C4.(He3⋊C2), (C4×He3).2C2, He33C4.3C2, C3.2(C324Q8), (C2×He3).11C22, C6.27(C2×C3⋊S3), C2.3(C2×He3⋊C2), SmallGroup(216,66)

Series: Derived Chief Lower central Upper central

C1C3C2×He3 — He34Q8
C1C3C32He3C2×He3He33C4 — He34Q8
He3C2×He3 — He34Q8
C1C6C12

Generators and relations for He34Q8
 G = < a,b,c,d,e | a3=b3=c3=d4=1, e2=d2, ab=ba, cac-1=ab-1, ad=da, eae-1=a-1, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 186 in 66 conjugacy classes, 24 normal (10 characteristic)
C1, C2, C3, C3, C4, C4, C6, C6, Q8, C32, Dic3, C12, C12, C3×C6, Dic6, C3×Q8, He3, C3×Dic3, C3×C12, C2×He3, C3×Dic6, He33C4, C4×He3, He34Q8
Quotients: C1, C2, C22, S3, Q8, D6, C3⋊S3, Dic6, C2×C3⋊S3, He3⋊C2, C324Q8, C2×He3⋊C2, He34Q8

Smallest permutation representation of He34Q8
On 72 points
Generators in S72
(1 40 7)(2 37 8)(3 38 5)(4 39 6)(9 66 46)(10 67 47)(11 68 48)(12 65 45)(13 51 31)(14 52 32)(15 49 29)(16 50 30)(17 42 62)(18 43 63)(19 44 64)(20 41 61)(21 58 33)(22 59 34)(23 60 35)(24 57 36)(25 56 71)(26 53 72)(27 54 69)(28 55 70)
(1 21 29)(2 22 30)(3 23 31)(4 24 32)(5 35 51)(6 36 52)(7 33 49)(8 34 50)(9 43 69)(10 44 70)(11 41 71)(12 42 72)(13 38 60)(14 39 57)(15 40 58)(16 37 59)(17 53 45)(18 54 46)(19 55 47)(20 56 48)(25 68 61)(26 65 62)(27 66 63)(28 67 64)
(1 40 33)(2 37 34)(3 38 35)(4 39 36)(5 31 13)(6 32 14)(7 29 15)(8 30 16)(9 27 54)(10 28 55)(11 25 56)(12 26 53)(17 72 62)(18 69 63)(19 70 64)(20 71 61)(21 58 49)(22 59 50)(23 60 51)(24 57 52)(41 68 48)(42 65 45)(43 66 46)(44 67 47)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 18 3 20)(2 17 4 19)(5 41 7 43)(6 44 8 42)(9 51 11 49)(10 50 12 52)(13 68 15 66)(14 67 16 65)(21 54 23 56)(22 53 24 55)(25 58 27 60)(26 57 28 59)(29 46 31 48)(30 45 32 47)(33 69 35 71)(34 72 36 70)(37 62 39 64)(38 61 40 63)

G:=sub<Sym(72)| (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,43,69)(10,44,70)(11,41,71)(12,42,72)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,53,45)(18,54,46)(19,55,47)(20,56,48)(25,68,61)(26,65,62)(27,66,63)(28,67,64), (1,40,33)(2,37,34)(3,38,35)(4,39,36)(5,31,13)(6,32,14)(7,29,15)(8,30,16)(9,27,54)(10,28,55)(11,25,56)(12,26,53)(17,72,62)(18,69,63)(19,70,64)(20,71,61)(21,58,49)(22,59,50)(23,60,51)(24,57,52)(41,68,48)(42,65,45)(43,66,46)(44,67,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63)>;

G:=Group( (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,43,69)(10,44,70)(11,41,71)(12,42,72)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,53,45)(18,54,46)(19,55,47)(20,56,48)(25,68,61)(26,65,62)(27,66,63)(28,67,64), (1,40,33)(2,37,34)(3,38,35)(4,39,36)(5,31,13)(6,32,14)(7,29,15)(8,30,16)(9,27,54)(10,28,55)(11,25,56)(12,26,53)(17,72,62)(18,69,63)(19,70,64)(20,71,61)(21,58,49)(22,59,50)(23,60,51)(24,57,52)(41,68,48)(42,65,45)(43,66,46)(44,67,47), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63) );

G=PermutationGroup([[(1,40,7),(2,37,8),(3,38,5),(4,39,6),(9,66,46),(10,67,47),(11,68,48),(12,65,45),(13,51,31),(14,52,32),(15,49,29),(16,50,30),(17,42,62),(18,43,63),(19,44,64),(20,41,61),(21,58,33),(22,59,34),(23,60,35),(24,57,36),(25,56,71),(26,53,72),(27,54,69),(28,55,70)], [(1,21,29),(2,22,30),(3,23,31),(4,24,32),(5,35,51),(6,36,52),(7,33,49),(8,34,50),(9,43,69),(10,44,70),(11,41,71),(12,42,72),(13,38,60),(14,39,57),(15,40,58),(16,37,59),(17,53,45),(18,54,46),(19,55,47),(20,56,48),(25,68,61),(26,65,62),(27,66,63),(28,67,64)], [(1,40,33),(2,37,34),(3,38,35),(4,39,36),(5,31,13),(6,32,14),(7,29,15),(8,30,16),(9,27,54),(10,28,55),(11,25,56),(12,26,53),(17,72,62),(18,69,63),(19,70,64),(20,71,61),(21,58,49),(22,59,50),(23,60,51),(24,57,52),(41,68,48),(42,65,45),(43,66,46),(44,67,47)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,18,3,20),(2,17,4,19),(5,41,7,43),(6,44,8,42),(9,51,11,49),(10,50,12,52),(13,68,15,66),(14,67,16,65),(21,54,23,56),(22,53,24,55),(25,58,27,60),(26,57,28,59),(29,46,31,48),(30,45,32,47),(33,69,35,71),(34,72,36,70),(37,62,39,64),(38,61,40,63)]])

He34Q8 is a maximal subgroup of
He35SD16  He33Q16  He37SD16  He35Q16  He39SD16  He37Q16  C3⋊S3⋊Dic6  C12⋊S3⋊S3  C62.47D6  C62.16D6  Q8×He3⋊C2
He34Q8 is a maximal quotient of
C62.29D6  C62.30D6

31 conjugacy classes

class 1  2 3A3B3C3D3E3F4A4B4C6A6B6C6D6E6F12A12B12C···12J12K12L12M12N
order12333333444666666121212···1212121212
size1111666621818116666226···618181818

31 irreducible representations

dim1112222336
type++++-+-
imageC1C2C2S3Q8D6Dic6He3⋊C2C2×He3⋊C2He34Q8
kernelHe34Q8He33C4C4×He3C3×C12He3C3×C6C32C4C2C1
# reps1214148442

Matrix representation of He34Q8 in GL5(𝔽13)

012000
112000
00010
0012122
00001
,
10000
01000
00300
00030
00003
,
121000
120000
00090
0010106
001233
,
37000
610000
00100
00010
00001
,
114000
22000
0012122
00010
00001

G:=sub<GL(5,GF(13))| [0,1,0,0,0,12,12,0,0,0,0,0,0,12,0,0,0,1,12,0,0,0,0,2,1],[1,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3],[12,12,0,0,0,1,0,0,0,0,0,0,0,10,12,0,0,9,10,3,0,0,0,6,3],[3,6,0,0,0,7,10,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[11,2,0,0,0,4,2,0,0,0,0,0,12,0,0,0,0,12,1,0,0,0,2,0,1] >;

He34Q8 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_4Q_8
% in TeX

G:=Group("He3:4Q8");
// GroupNames label

G:=SmallGroup(216,66);
// by ID

G=gap.SmallGroup(216,66);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-3,24,73,31,387,1444,382]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e^-1=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽