metabelian, supersoluble, monomial
Aliases: He3⋊4D4, C32⋊3D12, C12⋊S3⋊C3, (C3×C12)⋊1C6, (C3×C12)⋊1S3, C4⋊(C32⋊C6), (C3×C6).8D6, C6.11(S3×C6), C12.4(C3×S3), (C4×He3)⋊1C2, C3.2(C3×D12), C32⋊2(C3×D4), (C2×He3).8C22, (C2×C3⋊S3)⋊1C6, (C3×C6).3(C2×C6), (C2×C32⋊C6)⋊3C2, C2.4(C2×C32⋊C6), SmallGroup(216,51)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for He3⋊4D4
G = < a,b,c,d,e | a3=b3=c3=d4=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, cd=dc, ce=ec, ede=d-1 >
Subgroups: 302 in 62 conjugacy classes, 21 normal (17 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, D4, C32, C32, C12, C12, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, D12, C3×D4, He3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C32⋊C6, C2×He3, C3×D12, C12⋊S3, C4×He3, C2×C32⋊C6, He3⋊4D4
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, C3×S3, D12, C3×D4, S3×C6, C32⋊C6, C3×D12, C2×C32⋊C6, He3⋊4D4
(1 16 24)(2 13 21)(3 14 22)(4 15 23)(5 25 35)(6 26 36)(7 27 33)(8 28 34)(9 18 29)(10 19 30)(11 20 31)(12 17 32)
(1 7 29)(2 8 30)(3 5 31)(4 6 32)(9 16 27)(10 13 28)(11 14 25)(12 15 26)(17 23 36)(18 24 33)(19 21 34)(20 22 35)
(9 16 27)(10 13 28)(11 14 25)(12 15 26)(17 36 23)(18 33 24)(19 34 21)(20 35 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 3)(5 29)(6 32)(7 31)(8 30)(9 35)(10 34)(11 33)(12 36)(13 21)(14 24)(15 23)(16 22)(17 26)(18 25)(19 28)(20 27)
G:=sub<Sym(36)| (1,16,24)(2,13,21)(3,14,22)(4,15,23)(5,25,35)(6,26,36)(7,27,33)(8,28,34)(9,18,29)(10,19,30)(11,20,31)(12,17,32), (1,7,29)(2,8,30)(3,5,31)(4,6,32)(9,16,27)(10,13,28)(11,14,25)(12,15,26)(17,23,36)(18,24,33)(19,21,34)(20,22,35), (9,16,27)(10,13,28)(11,14,25)(12,15,26)(17,36,23)(18,33,24)(19,34,21)(20,35,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,3)(5,29)(6,32)(7,31)(8,30)(9,35)(10,34)(11,33)(12,36)(13,21)(14,24)(15,23)(16,22)(17,26)(18,25)(19,28)(20,27)>;
G:=Group( (1,16,24)(2,13,21)(3,14,22)(4,15,23)(5,25,35)(6,26,36)(7,27,33)(8,28,34)(9,18,29)(10,19,30)(11,20,31)(12,17,32), (1,7,29)(2,8,30)(3,5,31)(4,6,32)(9,16,27)(10,13,28)(11,14,25)(12,15,26)(17,23,36)(18,24,33)(19,21,34)(20,22,35), (9,16,27)(10,13,28)(11,14,25)(12,15,26)(17,36,23)(18,33,24)(19,34,21)(20,35,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,3)(5,29)(6,32)(7,31)(8,30)(9,35)(10,34)(11,33)(12,36)(13,21)(14,24)(15,23)(16,22)(17,26)(18,25)(19,28)(20,27) );
G=PermutationGroup([[(1,16,24),(2,13,21),(3,14,22),(4,15,23),(5,25,35),(6,26,36),(7,27,33),(8,28,34),(9,18,29),(10,19,30),(11,20,31),(12,17,32)], [(1,7,29),(2,8,30),(3,5,31),(4,6,32),(9,16,27),(10,13,28),(11,14,25),(12,15,26),(17,23,36),(18,24,33),(19,21,34),(20,22,35)], [(9,16,27),(10,13,28),(11,14,25),(12,15,26),(17,36,23),(18,33,24),(19,34,21),(20,35,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,3),(5,29),(6,32),(7,31),(8,30),(9,35),(10,34),(11,33),(12,36),(13,21),(14,24),(15,23),(16,22),(17,26),(18,25),(19,28),(20,27)]])
He3⋊4D4 is a maximal subgroup of
He3⋊3SD16 He3⋊2D8 He3⋊3D8 He3⋊5SD16 He3⋊6SD16 He3⋊4D8 He3⋊6D8 He3⋊10SD16 C12⋊S3⋊S3 C12.84S32 C3⋊S3⋊D12 C12.86S32 C62.36D6 D4×C32⋊C6 (Q8×He3)⋊C2
He3⋊4D4 is a maximal quotient of
He3⋊4Q16 He3⋊6SD16 He3⋊4D8 C62.20D6 C62.21D6
31 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 12A | 12B | 12C | ··· | 12J |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 18 | 18 | 2 | 3 | 3 | 6 | 6 | 6 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 2 | 2 | 6 | ··· | 6 |
31 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D4 | D6 | C3×S3 | D12 | C3×D4 | S3×C6 | C3×D12 | C32⋊C6 | C2×C32⋊C6 | He3⋊4D4 |
kernel | He3⋊4D4 | C4×He3 | C2×C32⋊C6 | C12⋊S3 | C3×C12 | C2×C3⋊S3 | C3×C12 | He3 | C3×C6 | C12 | C32 | C32 | C6 | C3 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 1 | 2 |
Matrix representation of He3⋊4D4 ►in GL6(𝔽13)
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
3 | 7 | 0 | 0 | 0 | 0 |
6 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 7 | 0 | 0 |
0 | 0 | 6 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 7 |
0 | 0 | 0 | 0 | 6 | 10 |
0 | 12 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
G:=sub<GL(6,GF(13))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[3,6,0,0,0,0,7,10,0,0,0,0,0,0,3,6,0,0,0,0,7,10,0,0,0,0,0,0,3,6,0,0,0,0,7,10],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12,0,0,0] >;
He3⋊4D4 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_4D_4
% in TeX
G:=Group("He3:4D4");
// GroupNames label
G:=SmallGroup(216,51);
// by ID
G=gap.SmallGroup(216,51);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,79,1444,736,5189]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations