Copied to
clipboard

G = He3:4D4order 216 = 23·33

1st semidirect product of He3 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial

Aliases: He3:4D4, C32:3D12, C12:S3:C3, (C3xC12):1C6, (C3xC12):1S3, C4:(C32:C6), (C3xC6).8D6, C6.11(S3xC6), C12.4(C3xS3), (C4xHe3):1C2, C3.2(C3xD12), C32:2(C3xD4), (C2xHe3).8C22, (C2xC3:S3):1C6, (C3xC6).3(C2xC6), (C2xC32:C6):3C2, C2.4(C2xC32:C6), SmallGroup(216,51)

Series: Derived Chief Lower central Upper central

C1C3xC6 — He3:4D4
C1C3C32C3xC6C2xHe3C2xC32:C6 — He3:4D4
C32C3xC6 — He3:4D4
C1C2C4

Generators and relations for He3:4D4
 G = < a,b,c,d,e | a3=b3=c3=d4=e2=1, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, cd=dc, ce=ec, ede=d-1 >

Subgroups: 302 in 62 conjugacy classes, 21 normal (17 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, D4, C32, C32, C12, C12, D6, C2xC6, C3xS3, C3:S3, C3xC6, C3xC6, D12, C3xD4, He3, C3xC12, C3xC12, S3xC6, C2xC3:S3, C32:C6, C2xHe3, C3xD12, C12:S3, C4xHe3, C2xC32:C6, He3:4D4
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2xC6, C3xS3, D12, C3xD4, S3xC6, C32:C6, C3xD12, C2xC32:C6, He3:4D4

Smallest permutation representation of He3:4D4
On 36 points
Generators in S36
(1 16 24)(2 13 21)(3 14 22)(4 15 23)(5 25 35)(6 26 36)(7 27 33)(8 28 34)(9 18 29)(10 19 30)(11 20 31)(12 17 32)
(1 7 29)(2 8 30)(3 5 31)(4 6 32)(9 16 27)(10 13 28)(11 14 25)(12 15 26)(17 23 36)(18 24 33)(19 21 34)(20 22 35)
(9 16 27)(10 13 28)(11 14 25)(12 15 26)(17 36 23)(18 33 24)(19 34 21)(20 35 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 3)(5 29)(6 32)(7 31)(8 30)(9 35)(10 34)(11 33)(12 36)(13 21)(14 24)(15 23)(16 22)(17 26)(18 25)(19 28)(20 27)

G:=sub<Sym(36)| (1,16,24)(2,13,21)(3,14,22)(4,15,23)(5,25,35)(6,26,36)(7,27,33)(8,28,34)(9,18,29)(10,19,30)(11,20,31)(12,17,32), (1,7,29)(2,8,30)(3,5,31)(4,6,32)(9,16,27)(10,13,28)(11,14,25)(12,15,26)(17,23,36)(18,24,33)(19,21,34)(20,22,35), (9,16,27)(10,13,28)(11,14,25)(12,15,26)(17,36,23)(18,33,24)(19,34,21)(20,35,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,3)(5,29)(6,32)(7,31)(8,30)(9,35)(10,34)(11,33)(12,36)(13,21)(14,24)(15,23)(16,22)(17,26)(18,25)(19,28)(20,27)>;

G:=Group( (1,16,24)(2,13,21)(3,14,22)(4,15,23)(5,25,35)(6,26,36)(7,27,33)(8,28,34)(9,18,29)(10,19,30)(11,20,31)(12,17,32), (1,7,29)(2,8,30)(3,5,31)(4,6,32)(9,16,27)(10,13,28)(11,14,25)(12,15,26)(17,23,36)(18,24,33)(19,21,34)(20,22,35), (9,16,27)(10,13,28)(11,14,25)(12,15,26)(17,36,23)(18,33,24)(19,34,21)(20,35,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,3)(5,29)(6,32)(7,31)(8,30)(9,35)(10,34)(11,33)(12,36)(13,21)(14,24)(15,23)(16,22)(17,26)(18,25)(19,28)(20,27) );

G=PermutationGroup([[(1,16,24),(2,13,21),(3,14,22),(4,15,23),(5,25,35),(6,26,36),(7,27,33),(8,28,34),(9,18,29),(10,19,30),(11,20,31),(12,17,32)], [(1,7,29),(2,8,30),(3,5,31),(4,6,32),(9,16,27),(10,13,28),(11,14,25),(12,15,26),(17,23,36),(18,24,33),(19,21,34),(20,22,35)], [(9,16,27),(10,13,28),(11,14,25),(12,15,26),(17,36,23),(18,33,24),(19,34,21),(20,35,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,3),(5,29),(6,32),(7,31),(8,30),(9,35),(10,34),(11,33),(12,36),(13,21),(14,24),(15,23),(16,22),(17,26),(18,25),(19,28),(20,27)]])

He3:4D4 is a maximal subgroup of
He3:3SD16  He3:2D8  He3:3D8  He3:5SD16  He3:6SD16  He3:4D8  He3:6D8  He3:10SD16  C12:S3:S3  C12.84S32  C3:S3:D12  C12.86S32  C62.36D6  D4xC32:C6  (Q8xHe3):C2
He3:4D4 is a maximal quotient of
He3:4Q16  He3:6SD16  He3:4D8  C62.20D6  C62.21D6

31 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F 4 6A6B6C6D6E6F6G6H6I6J12A12B12C···12J
order122233333346666666666121212···12
size111818233666223366618181818226···6

31 irreducible representations

dim11111122222222666
type++++++++++
imageC1C2C2C3C6C6S3D4D6C3xS3D12C3xD4S3xC6C3xD12C32:C6C2xC32:C6He3:4D4
kernelHe3:4D4C4xHe3C2xC32:C6C12:S3C3xC12C2xC3:S3C3xC12He3C3xC6C12C32C32C6C3C4C2C1
# reps11222411122224112

Matrix representation of He3:4D4 in GL6(F13)

001000
000100
000010
000001
100000
010000
,
1210000
1200000
0012100
0012000
0000121
0000120
,
100000
010000
0001200
0011200
0000121
0000120
,
370000
6100000
003700
0061000
000037
0000610
,
0120000
1200000
0000012
0000120
0001200
0012000

G:=sub<GL(6,GF(13))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0],[3,6,0,0,0,0,7,10,0,0,0,0,0,0,3,6,0,0,0,0,7,10,0,0,0,0,0,0,3,6,0,0,0,0,7,10],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12,0,0,0] >;

He3:4D4 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_4D_4
% in TeX

G:=Group("He3:4D4");
// GroupNames label

G:=SmallGroup(216,51);
// by ID

G=gap.SmallGroup(216,51);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,79,1444,736,5189]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^2=1,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<